Friday, April 23, 2021
Home Quantum Physics A Cost-Effective Way To Get Qubits Working At Room Temperature

A Cost-Effective Way To Get Qubits Working At Room Temperature

Welcome back guys, today we have one more exciting breakthrough achieved.  Quantum computing and qubits are things that we science geeks would have heard of. Recently researchers were successful in using a simpler and cost-effective material to hold qubits in a stable form. Before getting into the details let us see a few details about quantum computing and qubits.

A quantum computer uses a sequence of quantum bits or qubits. They can represent information as 0 or 1 or one among a series of states between 0 and 1, known as a quantum superposition of those qubits.

To better explain this concept, imagine a coin. With a digital bit, the coin heads up or tails up — thus 0 or 1. Now, for a qubit, imagine a coin spinning on a table. It hasn’t fallen yet, so you can’t conclude if it’s tails up or heads up.

But using this calls for a very low temperature, and in general, we use about 15milliKelvin (0.015K).

Coming to the main news

Researchers have now found a new cheaper technique to get qubits, the primary building blocks of quantum computing, working at room temperature. This means that we’re getting closer to the day when everyone can buy quantum computers.

While most qubits to date operate on superconducting materials or as single atoms, this team explored the use of defects in silicon carbide (SiC) to hold qubits instead which is a simpler and more cost-effective way of getting qubits running as required.

Although SiC has been explored as a qubit-holding material before, the problem was to get these qubits stable enough to use. The new research identifies the structural tweaks needed to make the formula work.

“To create a qubit, a point defect in a crystal lattice is being excited using lasers, and when a photon is emitted, this defect begins to luminesce,” says physicist Igor Abrikosov, from Linköping University in Sweden.

They also conducted experiments like these last year, where researchers could get stable qubits working in diamond defects at room temperature, by replacing one carbon atom with one nitrogen atom.

The abundance of SiC and its lower cost is what makes the research promising. They have designed the plan, actual experiments, maybe using chemical vapor deposition, are yet to happen.

Recent evolutions in 3D engineering make the prospect of this sort of defect construction more viable than ever before, even though challenges persist.

This research will be profitable long before quantum computing hits the mainstream, though–this information can also apply to the development of delicate scientific instruments, including magnetometers and biosensors.

The research has been published in Nature Communications.


Please enter your comment!
Please enter your name here

Most Popular

Nepal Refuses Cleanup of Mt. Everest due to Pandemic

Nepal's government deny calls for cleanup of Mount Everest the world's highest mountain due to the corona virus outbreak. Fluorescent tents, discarded climbing equipment, empty...

Comparing Black Holes, White Holes and Worm Holes

Black Hole, White hole, Wormhole. Ew!! Seems like all these space terms are making us puzzled. So I’m back guys with an interesting topic...

Origins of Earth’s magnetic field remain a mystery

Microscopic minerals excavated from an ancient outcrop of Jack Hills, in Western Australia, have been the subject of intense geological study, as they seem...

Google Bans its Employees to use Zoom Video Conferencing Application

Zoom Video Conferencing app is in Limelight these days and is attracted by vast number of users. Due to the COVID-19 lock down in...

Recent Comments