Login with your Social Account

Higgs Boson

What is God Particle aka the Higgs Boson?

The Higgs Boson God particle has been widely talked about in the recent past. You might have heard people talking about how its discovery has simplified explanations for why electrons have mass. You might have even heard about how it has aided in proving that the Standard Model is not incorrect. The discovery of the particle received tremendous attention from the press, and, was celebrated quite remarkably. So, what is all the fuss about? What really is the Higgs Boson? How does it help explain certain phenomena? Why is it called God particle? If you are looking for answers to any of these questions, or, are simply intrigued and want to know more about the Higgs Boson, then, look no further, you’re at the right place.

The Higgs boson is considered to be the particle excitation of the Higgs field and is named after the physicist, Peter Higgs. Peter Higgs and five other scientists are credited with coming up with the mechanism that provided evidence to the existence of such a particle.

What is all the fuss about then?

The reason there has been so much buzz surrounding the Higgs boson till recently was because its existence was only experimentally proven as recently as 2012. The reason it took so long for scientists to confirm its existence is the fact that the technology needed for confirming the existence of the Higgs boson, had not existed for a very long time. This discovery was a physics version of the discovery of DNA.

The discovery of Gods Particle is the physics version of the discovery of DNA.--Science News Click To Tweet

The discovery of this particle was made possible by the Large Hadron Collider (LHC). The Large Hadron Collider is a particle collider and is gigantic in nature. It is the largest machine in the world. It is present in a humongous tunnel near Geneva in Switzerland.  Without the LHC, it would have been an extremely daunting, and some can even say, an improbable task to prove the existence of the Higgs boson.

You can read everything about search and discovery of Higgs boson here ->The Higgs Boson discovery pdf by CERN

Particle accelerators and the Large Hadron Collider

The Large Hadron Collider is a particle accelerator that is used to accelerate charged atomic and subatomic particles to large enough speeds to observe their behaviour. The Large Hadron Collider is currently the largest among such colliders. The tunnel in which it lies is massive and is 27km in circumference. It was built by the European Organization for Nuclear Research (CERN) and is used for studying the observations made by the collision of particle beams, generally, proton beams.

CERN LHC Particle Collider

CERN LHC Particle Collider (Source: CERN)

Particle accelerators such as the LHC are considered to be fundamental in answering some of the questions that remain in the field of particle physics. These accelerators generally use an electromagnetic field to carry out the acceleration. You may ask, why is there a need for an electromagnetic field? To understand this, you will need to know how particle accelerators work. Particle accelerators need to have a source. A source is what generates particles such as protons and electrons. The electric fields are used in the process of accelerating these particles while the magnetic fields are responsible for controlling the paths of these particles.

To generate electrons for these particle accelerators, ‘electron guns’ are generally used. The electron gun consists of a cathode, which, is heated to high temperatures causing electrons to be produced from its surface. The electron gun consists of electrical and magnetic deflectors and the electron beam is obtained from a narrow hole at the end of the gun. This electron gun can also be viewed as an accelerator since it also consists of an electric field that accelerates the electrons, and magnetic deflectors that help in controlling the path. These electrons move towards the anode present in the gun and while passing through the electric field pick up speed and come out of the gun as a narrow beam.

To generate protons for the accelerators, hydrogen gas is used since only the nuclei of hydrogen atoms consist of single protons. The gas is ionized, and the protons and electrons are separated through electric fields and the beam of protons is obtained through a hole.

The beams produced are then collided and the particles that result from the collision are observed by detecting electrical signals. The detectors used in particle accelerators are built so that the electrical signals can be converted to digital data and analyzed. Higgs boson was detected in 2012 during such collisions.

Now that we know how Higgs boson was detected, let’s delve into what it really is.

The Higgs boson is a particle that is generated by the quantum excitation of the Higgs field. You may ask, what is the Higgs field? Well, the Higgs field is a field that exists evenly distributed throughout the universe. Some particles are said to interact with this field and obtain mass while some particles are said to not interact with it. The Higgs field is quite dissimilar to other fields, since, it is scalar. A scalar field is one where every point in the field can be associated with a scalar value.

So, what does that mean? It means that the Higgs field is directionless, it has a spin value of 0. Unlike other fields such as electromagnetic fields, the Higgs field has no preferred direction.

Random Quiz

The particles carrying the strong force are the:

Correct! Wrong!

The strong interaction is observable at two ranges: on a larger scale (about 1 to 3 fm), it is the force that binds protons and neutrons (nucleons) together to form the nucleus of an atom. On the smaller scale (less than about 0.8 fm, the radius of a nucleon), it is the force (carried by gluons) that holds quarks together to form protons, neutrons, and other hadron particles.


What is all this stuff about the Standard Model then?

All things in this world are constituted by atoms. Atoms, in turn, are made up of protons, neutrons and electrons. These particles are made up of even smaller subatomic particles. The Standard Model was able to explain the interactions between these subatomic particles and hence provided the basis for the explanations of electricity, magnetism and radioactivity. However, the Standard Model, before the discovery of the Higgs boson, was unable to provide evidence for how these particles gained mass.

This is where the Higgs field comes into play. Like I mentioned earlier, some particles interact with this field, while some do not. The ones that do not interact with this field, like the photons, do not gain mass and can hence travel at the speed of light. The ones that do interact with this field, like the electrons, gain mass through the interactions. Think of it this way, if the Higgs field did not exist, there would be no interactions with the field and therefore, all subatomic particles would have no mass.

Why is the Higgs Boson called the God particle?

Perhaps, the term ‘God particle’ is justified. The Higgs boson helped fill a large hole in the Standard Model and is considered to have provided evidence that proves a large number of phenomena. In some sense, this particle is truly Godly!

But, the term ‘God particle’ arises from the title of Leon Lederman’s book, ‘The God Particle’, in which, the Higgs boson is the primary subject of discussion. Leon Lederman is credited with providing this particular title to the particle. But, the story is actually even more fascinating. Lederman wanted to title his book as ‘The Goddamn Particle’ because of how difficult it is to find the particle and actually prove its existence. His publishers, however, would not allow for such an audacious title and the book was then titled ‘The God Particle’.

Is this particle dangerous? Can it prove to be detrimental?

Stephen Hawking has cautioned the world about the potential dangers that the Higgs boson might harbour. Some researchers believe that this particle could lead to the destruction of the universe. However, this destruction will not take place anytime soon. These researchers estimate that this catastrophe is at least billions of years away. The mass of the Higgs field will be to blame if this occurs. Since the Higgs field is present everywhere, even a small change in its mass would cause major instability in the universe, causing the universe to collapse.

Let’s recap

In conclusion, the Higgs boson is the result of the excitation of the Higgs field. The Higgs field is a scalar field that provides mass to the subatomic particles that interact with it. Without the Higgs field, all subatomic particles would have no mass. This entire mechanism was suggested by Peter Higgs and five other scientists in 1964. The Higgs boson, however, was not discovered until 2012, when it was first discovered by the Large Hadron Collider, which, is a particle accelerator. The name ‘God particle’ was the result of Lederman’s similarly titled book about the Higgs boson.

Although the ‘God particle’ certainly seems to be a misnomer, the name given to the Higgs boson might have done the world a whole lot of good. The title given to the particle has ensured that more and more people look for the Higgs boson on the internet and try to understand what it means and how much effort has been put in, to find it. The name, ‘God particle’ could even be the reason why you are currently reading this. Any scientist would give you the death stare for calling the Higgs boson, the ‘God particle’, but, maybe the name is not so bad after all. Perhaps, the magnitude of the reception of the news of the discovery of Higgs boson should be entirely credited to this misnomer!

Read More:

  1. Here’s What Happens When a Higgs Boson Dies — and What It Means for Particle Physics
  2. Physicists’ search for rare Higgs boson pairs could yield new physics
  3. What exactly is Higgs Boson?
Wormhole Graphic Representation

What is a Wormhole?

Wormholes have served as fodder for numerous science fiction stories and movies for quite some time now. There have been several theories that try to explain how wormholes work and several more on how time travel could be made possible through these wormholes. Much like black holes, wormholes are beguiling and tend to leave people mesmerized with the intricacies. If you have ever wondered about what these things are, or, if you want to better understand all their alluring intricacies, then, this article is exactly what you need. Read on to learn more about the splendour of these mysterious bodies.

Content

  1. Wormhole Explained
  2. Wormhole vs Black Hole
  3. Problems with travel through wormholes
  4. Keeping a wormhole open

Wormhole explained

Wormholes can be visualized as portals that can allow entities to travel through space and time. Black holes consist of a point of singularity where all mass is said to accumulate. These black holes consume anything in their proximity. Scientists hypothesize that there also exists a white hole at the other end of a black hole. These white holes spit out the matter, and light, absorbed by the black hole. The entry point and the exit point exist as separate points in the universe. The bridges that link two separate points in space-time are referred to as Einstein-Rosen bridges. This phenomenon of the existence of bridges was predicted in 1935 when Albert Einstein and Nathan Rosen published a paper showing the existence of a corridor or passage directly connecting one part of the universe to another as part of a black hole-white hole system.

These bridges, however, are highly unstable and tend to collapse due to the influence of the gravitational force on them. A wormhole, in this context, is a passage from one point in space-time to another. Each wormhole is expected to have two mouths and a neck, that, serves as a bridge between the two mouths. Proposedly, one mouth of a wormhole is a black hole and at the other mouth is a white hole. Both black holes and white holes are solutions to Einstein’s field equations.

Einsteins Field Equation

Einsteins' Field Equation

Einsteins’ Field Equation

where

  1. Rμν is the Ricci curvature tensor
  2. R is the scalar curvature
  3.  gμν is the metric tensor
  4.  Λ is the cosmological constant
  5. G is Newton’s gravitational constant
  6. c is the speed of light in vacuum
  7. Tμν is the stress-energy tensor.

A black hole is Schwarzschild’s solution to Einstein’s field equations. Ludwig Flamm discovered the presence of another solution to these field equations while understanding the Schwarzschild’s solution, and this solution was referred to as the white hole. There exists a parameter, called the Schwarzschild’s radius for every entity with mass. This radius is the radius of a sphere such that if all the mass of an object were to be compressed within the sphere of radius equal to the Schwarzschild’s radius, the escape velocity from the surface of the object would equal to the speed of light.

Lorentzian Wormhole

“Embedding diagram” of a Schwarzschild wormhole (Source: wikipedia.org)

Mathematically it could be represented as,

R = 2GM/c2

where,

R is the Schwarzschild’s radius, G is the gravitational constantc is the speed of light, and M the mass of the black hole.

Physics is often stranger than science fiction, and I think science fiction takes its cues from physics: higher dimensions, wormholes, the warping of space and time, stuff like that. -Michio Kaku Click To Tweet

To understand a wormhole through better visualization, we would have to consider the analogy of a piece of paper consisting of two points on it. The two points represent different points in space-time.  For those of you who are absolutely tired of hearing about this analogy (in various movies or explanations), skip the next couple of lines.

For those of you who have not heard of this analogy, pay attention. When the paper is not bent or folded, there is a certain distance between the two points. Now, imagine that the paper is folded, poking a pencil through the paper to connect the two points would provide a shortcut between the points. This distance is seemingly much lesser than the distance between the points had the paper not been folded. A wormhole works in a similar manner to this shortcut. It provides a shortcut between two points in space-time. These points could even belong to different universes.

Wormhole visualized

Wormhole visualized (Credit: Wikimedia Commons)

Wormholes have not been discovered yet. In theory, their existence is proven, but, nobody has ever found one.

Many physicists and astronomers believe that the supermassive black holes that exist at the centre of most galaxies could potentially be wormholes.

Wormhole vs Black Hole

What’s the difference between black holes and wormholes? Like I have mentioned, wormholes are better explained as passages while a black hole is just a mouth to this passage. Before I get to the specific differences, let’s look at some of the similarities between the two. Both are mathematically consistent. Both distort space and thus both should have matter swirling around them. Both are immensely fascinating, and both have not been fully understood!

Black Hole NASA

This artist’s concept illustrates a supermassive black hole with millions to billions of times the mass of our sun. (Source: NASA JPL)

Now, let’s get to the differences between the two. Recently, we got an image of a black hole whereas wormhole is yet to be found. One more distinguishing factor between black holes and wormholes is the Hawking radiation. Black holes lose energy continuously through the emission of Hawking radiation. This emission is initially slow and builds speed as the process continues. Only black holes are said to emit this Hawking radiation.

Another difference is the lack of an event horizon in wormholes. The event horizon of a black hole is its boundary. To escape from within a black hole, one would have to travel faster than light, at speeds greater than the escape velocity of the black hole.

In black holes, there is no point of return. Once you enter a black hole, there is no escaping it. On the other hand, when you travel through a wormhole, if the wormhole is kept open for a sufficiently long enough time, you could potentially travel back to the same place through the same wormhole. There is a lot of controversy over this theory though since you would not end up going back to the same point in space-time that you initially started at.

Take the below question to quickly test your understanding of wormholes and black holes

Random Quiz

How much is the escape speed in Schwarzschild radius?

Correct! Wrong!

The escape velocity from the surface (i.e., the event horizon) of a Black Hole is exactly c, the speed of light. Actually, the very prediction of the existence of black holes was based on the idea that there could be objects with escape velocity equal to c.


Perhaps, the most distinguishing aspect is the fact that wormholes are purely theoretical, while black holes are proven to exist. A black hole is a massive dent in the fabric of space-time that seems to cause a puncture in it. Anything that enters this puncture is consumed and is present at a single point of singularity. A wormhole, on the other hand, can be considered as two punctures in space-time that are connected to one another. The two punctures could exist as any two points in space-time.

Problems with travel through wormholes

The problems with travel through wormholes arise due to their size and stability. Primordial wormholes are considered to be so small that they are microscopic in nature. Travelling through microscopic wormholes would be highly impossible.

The other problem is the stability of wormholes. Wormholes, under the influence of gravitational forces, tend to collapse rather easily. In order to travel through these wormholes, wormholes should remain open. This requires the presence of Exotic Matter, which, I will cover in the next section. However, this exotic matter also only exists in theory. Keeping a wormhole open is a daunting challenge, indeed. 

Keeping a wormhole open

In the case of wormholes that are existent through the explanations of the string theory, the wormholes are kept open by cosmic strings. In the case of man-made and other wormholes, they would have to be kept open by exotic matter. Exotic matter is a special kind of hypothesized matter. The exotic matter has negative mass. This means that it is repulsive in nature. Positive masses that exist in this universe tend to attract each other, while exotic matter tends to repel.

Due to the presence of gravity, it would not be easy for wormholes to remain open. This exotic matter can counter gravity and allow wormholes to remain open. Exotic matter can be used to weave space and time and sustain wormholes. One candidate for the exotic matter is the vacuum of space.

To understand why the vacuum of empty space could be a potential candidate, you will first have to understand why empty space is not empty. Empty space consists of several virtual particles that are randomly generated. These particles cancel each other out, in pairs. Each pair is said to be a particle-antiparticle pair.

This property, where pairs of particles cancel each other out, can be manipulated to produce similar pairs of matter that cancel each other out. Exotic matter can thus be produced. The exotic matter would provide a great deal of help in the stabilization of wormholes by keeping them open.

Exotic matter, unlike regular matter, would accelerate in directions opposite to the applied force. Despite its peculiar properties and its deviation from the behaviour of normal matter, it is not inconsistent mathematically. It also does not violate the principles of conservation of energy or momentum.

For exotic matter, the mass-energy equivalence would be represented as,

E = -mc2

where,

  1. E represents energy
  2. m represents mass and
  3. c2 is the coefficient of proportionality where c is the speed of light.

The concept that interstellar travel is possible, is most certainly enthralling. The possibilities that can be unlocked through the travel in space-time are enormous and could change how we view the universe entirely. Through such travel, the vastness of the universe could be diminished. We could travel across galaxies and universes and unlock so many secrets of the universe. Although space-time travel has enormous potential, we are hindered by the fact that wormholes, at least for now, only exist in theory.

Eleanor Roosevelt, the former First Lady of the United States once said, “The future belongs to those who believe in the beauty of their dreams”. Maybe, one day we will uncover the secrets of the universe through space-time travel and view the universe in all its glory. Until then, we will have to settle for these dreams of what could be.

Read More:

  1. Ripples in Space-Time Could Reveal the Shape of Wormholes
  2. Can We Create Wormholes?
  3. What Would It Be Like to Ride Through a Wormhole?
Distribution of Dark Matter

What is dark matter and why is it still a mystery?

There are a lot of objects and bodies that exist in this gargantuan universe of ours. Everything in this vast abode that we call the universe, whether big or small, is said to consist of matter. Your phone, your body, your hair, dust, air and everything you see around is matter. Each and every one of these objects consists of matter and their existence can generally be perceived rather easily.

Estimated division of total energy in the universe into matter, dark matter and dark energy based on five years of WMAP data

Estimated division of total energy in the universe into matter, dark matter and dark energy based on five years of WMAP data (Credit: Wikipedia)

But what if I told you that most of the matter that exists in the universe cannot be perceived? What if I also told you that more than 85% of the matter in the universe has never been observed? These facts are hard to believe and are rather astounding, but, they are, indeed, facts. There is a special kind of matter called Dark matter, which constitutes about 85% of all the mass of universe and has never been observed directly.

Indeed, talking about the energy composition the universe is composed of roughly 4.6% matter, 23% dark matter and 72% dark energy (this is energy composition not to be confused with the above-mentioned mass composition). It is thought that we can neither detect nor measure dark energy but we can clearly see its implications. Let us talk about Dark matter in this blog and keep Dark energy aside for another blog.

Content:

  1. What is Matter?
  2. What tells the presence of Dark Matter?
  3. Types of dark matter
  4. Why should we find dark matter?
  5. What could dark matter be made of?
  6. How could we detect dark matter?
  7. Why is dark matter still a mystery?
  8. An Infographic On Dark Matter.

What is Matter?

To understand about Dark Matter, you have to understand about Matter first. The matter is something that has mass and occupies space. Matter can exist in any form or state. There are seven states of matter and they are:

  1. Solid
  2. Liquid
  3. Gas
  4. Ionised Plasma
  5. Quark-Gluon Plasma
  6. Bose-Einstein Condensate
  7. Fermionic Condensate

Matter consists of atoms, or, to be precise, the matter is made up of protons, neutrons, and electrons. This matter is called “Ordinary Matter”. The sub-atomic particles are built with some fundamental particles. These particles can be put into two groups: fermions and bosons. Fermions are the building blocks of matter. They all obey the Pauli exclusion principle. Bosons are force-carriers. They carry the electromagnetic, strong, and weak forces between fermions.

Fermions are those particles that follow Fermi-Dirac statistics and Bosons are the particle which follows Bose-Einstein statistics.

Standard Model

(Credit: Wikibooks )

Fermions

Fermions can be put into two categories: quarks and leptons. Quarks make up, amongst other things, the protons and neutrons in the nucleus. Leptons include electrons and neutrinos. The difference between quarks and leptons is that quarks interact with the strong nuclear force, whereas leptons do not.

Bosons

There are four bosons in the right-hand column of the standard model. The photon carries the electromagnetic force – photons are responsible for electromagnetic radiation, electric fields and magnetic fields. The gluon carries the strong nuclear force – they ‘glue’ quarks together to make up larger non-fundamental particles. The W+, W and Z0 bosons carry the weak nuclear force. When one quark changes into another quark, it gives off one of these bosons, which in turn decays into fermions.

All the above particles make up the Standard Model of particles and dark matter doesn’t come in this standard model

I want to know what dark matter and dark energy are comprised of. They remain a mystery, a complete mystery. No one is any closer to solving the problem than when these two things were discovered. --Neil deGrasse Tyson Click To Tweet

What tells the presence of Dark Matter? 

There are many observations which strongly suggests the presence of some strange non-luminous matter or the dark matter. Let us see some of them:

  1. The speed of bodies located farther from the galactic centre: From Kepler’s Second Law, it is expected that the rotation velocities will decrease with increase in the the distance from the centre of the galaxy, similar to the Solar System. This is not observed and the only obvious reason we could find is the presence of Dark matter.
  2. Mass velocity discrepancy: Stars in bound systems must obey the Virial theorem which together with the measured velocity distribution, can be used to measure the mass distribution in a bound system, such as elliptical galaxies or globular clusters. However, some velocity dispersion estimates of elliptical galaxies do not match the predicted velocity dispersion from the observed mass distribution. This discrepancy also tells that there is some extra invisible mass out there.
  3. Gravitational Lensing: Galaxies and other huge interstellar objects act as a lens and bends light. Actually, these massive things distort or bend the fabric of space-time and light passing through this distortion bends. So, the bending of light clearly depends on the mass of the galaxy. Researchers have made many such observations of light coming from quasars through some galaxy clusters. The bending of that light clearly tells that there is some extra mass out there.
  4. Cosmic Microwave Background: The Cosmic Microwave Background radiation or CMB for short is basically electromagnetic radiation which has been travelling for these 14 billion years since the big bang. This has the temperature data also. Scientists have collected a lot of data from this radiation and created a map. This map perfectly matches with the Dark matter model and clearly tells that the universe cannot exist without Dark Matter.
9 year WMAP image of background cosmic radiation

9-year WMAP image of cosmic microwave background (Credit: NASA)

Like this, there are many other proofs but these four are the most prominent proofs for the existence of some unknown and invisible matter out there.

Types of dark matter

The classification of dark matter is based on its velocities. Free streaming length (FSL) is used to describe the distance objects would travel due to the random motions in the early universe. The size of a protogalaxy is used for determining the category of dark matter.

  1. Cold dark matter: Dark matter whose constituents have an FSL less than the size of a protogalaxy.
  2. Warm dark matter: Dark matter whose constituents have an FSL comparable to the size of a protogalaxy.
  3. Hot dark matter: Dark matter whose constituents have an FSL greater than the size of a protogalaxy.

Why should we find dark matter?

Dark matter constitutes 85% of the Universe’s Mass and it is present in really huge quantity and a lot of it might be present here on earth as well. If detected, we could probably use it for energy production and many other unbelievable applications might come up.

Other than applications, dark matter could unveil some of the dark secrets of the universe which are lying unanswered for centuries.

What could dark matter be made of?

There are several theories about what dark matter could be made of and some of  them are:

  1. WIMPs(Weakly interacting massive particles):  WIMPs are hypothetical particles that are thought to make the dark matter. These are totally new particles interacting through weak forces which are probably weaker than the weak nuclear force. These particles are not included in the above-mentioned standard model. Researchers are trying and developing a lot of experiments to detect such particles.
  2. Axions: Axion is another hypothetical elementary particle. It was actually postulated to solve the strong CP problem in quantum chromodynamics. Scientists believe that if they axions exist and have some specific properties then they can be a possible component of dark matter.

Like this, there are many proposed things and to understand all these hypothetical particles, we need a deeper understanding of physics. There are theories also saying that the current understanding of gravity itself is wrong and should be modified according to the observations but there are limitations to this also.

How could we detect dark matter?

We can locate the places in the universe where dark matter is present using techniques like Gravitational Lensing and we can even create the model of galaxies including dark matter. But we are not yet able to detect the particles which make this dark matter. So, how could we detect dark matter? Let us discuss the possible approaches. Basically, there are three approaches and they are:

Large Underground Xenon detector inside watertank

Large Underground Xenon detector inside watertank (Credit: Wikipedia)

  1. Make it here: Physicists have been bombarding particles in accelerators like LHC and there is a hope that someday we create dark matter particles and hopefully detect them.
  2. Direct Detection: Considering the amount of dark matter present in the universe, there is a possibility that dark matter is present here on earth as well and there is a possibility that some sensitive detector could detect it. So, scientists have been building extremely sensitive detectors to detect dark matter. One such detector is The Large Underground Xenon experiment (LUX) aimed to directly detect weakly interacting massive particle (WIMP) interactions with the ordinary matter on Earth
  3.  Dark matter collisions: Scientists believe that collisions of dark matter could probably release something which we could detect. So, researchers are trying to use this approach as well.
Random Quiz

The Pauli's Exclusion principle states that two electrons in same orbitals have:

Correct! Wrong!

The Pauli Exclusion Principle states that, in an atom or molecule, no two electrons can have the same four electronic quantum numbers. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins.


Why is dark matter still a mystery?

While dark matter is the simplest explanation for the extra gravity and mass that exists, it is not necessarily the correct explanation. There are several theories that claim to explain this extra gravity and mass in the universe. Nobody really knows for sure if the existence of dark matter is a sufficient enough explanation for the existence of the extra mass. Dark matter does not give off light and as I have mentioned, does not interact with particles. Without any interactions, it is extremely hard to derive any conclusions on its nature and properties.

A recent paper in the physical review journals gave the maths claiming that dark matter might be created before the big bang itself which ads another mystery to the already existing mysteries around dark matter

New research claims dark matter might be older than the Big Bang

Dark matter may be considered as the universe’s biggest mystery. It is known that something makes objects faster than they should but we do not actually know what it is and where it came from. The origins of dark matter might be even more peculiar than it is known.


Jonathon Swift, an Anglo-Irish poet once said, “Vision is the art of seeing what is invisible to the others”. Dark matter may be invisible, but it has served to solve a lot of mysteries in this astonishingly mysterious universe. Without the invisible phenomenon of dark matter, there would still be a lot of perplexity regarding the formation of galaxies and their movements. Despite all the information we possess about the universe, nobody can say with certainty that dark matter exists. Perhaps, that is where the magnificence of physics lies, in its mystery, and this mystery is what makes the search for the truth worthwhile.

An Infographic On Dark Matter

Embed Image


Dark Matter Infographic

Read More:

  1. Dark Matter Behaves Differently in Dying Galaxies
  2. Dark matter on the move
Gravitational Wave in a Binary Black Hole

What is a gravitational wave and how it changed physics?

Gravitational waves were proposed by Henri Poincaré in 1905 and subsequently predicted in 1916 by Albert Einstein on the basis of his general theory of relativity. There are so many aspects of physics that are aesthetically pleasing. These aspects are not necessarily pleasing due to their visible or on the surface features, rather, they are aesthetically pleasing in their detail. Gravitational waves are certainly one such phenomenon. They have immense importance, and their impact in understanding the theories of physics is considerably high.

Content

  1. Gravitation and Gravitational waves explained
  2. So, what is space-time?
  3. Gravitational pull and formation of waves
  4. Detection of gravitational waves
  5. Significance of gravitational waves

Gravitation and Gravitational waves explained

Gravitational waves are ripples in the fabric of space-time that are formed due to the acceleration of masses. These ripples propagate outwards from the source of mass. One must understand that distortions are created in the fabric of space-time by bodies of mass. To visualize this concept, think of this fabric as a piece of paper or a blanket, with people holding on to it from all sides. When an object of mass is placed on the paper or blanket, there is a visible dent or distortion of the shape of the paper or blanket at the position where the object was placed. Now when these bodies of mass are moved about, that is, they are provided acceleration, these distortions also move about in the fabric of space-time. These accelerated bodies lead to the formation of waves in space-time. These waves are the gravitational waves.

Every time you accelerate - say by jumping up and down - you're generating gravitational waves. --Rainer Weiss Click To Tweet

As you would imagine, larger bodies tend to create larger intensity waves. Theoretically, any movement of a body having mass can cause these ripples. A person walking on the pavement, in theory, also causes these ripples. However, these ripples caused by a walking person are very minuscule and insignificant.

So, what is space-time?

The universe was long thought to be consisting of the three dimensions of space only. But, Albert Einstein proved that the universe consisted of a fourth dimension, time. It would be impossible to move in space without moving in time. Similarly, it would also be impossible to move in time without moving in space. Space and time, therefore, have a very integral relationship. Einstein stated that there is a profound link between motion through space and passage through time. He hypothesized that time is relative. Objects in motion experience time slower than objects at rest.

The three dimensions of space and the dimension of time are viewed as the four-dimensional space-time. Hermann Minkowski provided a geometric interpretation that fused the three dimensions of space and the dimension of time to form the space-time continuum. This was called the Minkowski space.

minkowski-space

Minkowski Space Illustration. Image Source: Wikipedia

In three dimensional space, the distance, D between any two points can be represented using the Pythagorean theorem as:

D2=(Δx)2 + (Δy)2 + (Δz)2

where,

Δx represents the difference in the first dimension, Δy represents the difference in the second dimension and Δz represents the difference in the third dimension

The spacetime difference of two points given by (Δs)2 varying by time Δt would be given as:

(Δs)2=(Δct)2 – (Δx)2 + (Δy)2 + (Δz)2

where,

c is a constant, representing the speed of light that enables conversion of units used to measure time to units used to measure space.

Gravitational pull and formation of waves

Every body that has mass tends to attract other bodies. Whether the mass is small or large, every body exerts a force on the other. This attraction is the gravitational pull. The greater the mass of the object, the larger its gravitational pull. The larger the distance of an object from another object, the lower its gravitational pull on it. Since every object, however large or small, tends to exert this pull on every other object, changes in gravity can provide insight into the behaviour of these objects.

Random Quiz

If the distance between two bodies is doubled, the force of attraction F between them will be:

Correct! Wrong!

Since the force of gravity acting between any two objects is inversely proportional to the square of the separation distance between the object's centers, Force F will be reduced by 1/2 x 1/2 = 1/4 times.


Consider the earlier example of the distortion caused by placing an object on paper or blanket, now, if we were to place a larger object, this would result in an even larger distortion. The larger object would cause a larger depression in the paper or blanket and hence, is said to have larger gravity. If the two objects were placed on the paper or blanket together, the larger object with the larger distortion would seem to be exerting a larger force of attraction towards the other object. If these objects moved, there would be ripples formed on the paper or blanket. This is similar to how gravitational waves are formed, the only difference being that the paper or blanket would be replaced by the fabric of space-time.

These gravitational waves cannot be felt easily. To detect these, you would require special equipment. These detectors are L shaped instruments with generally long arms.

Detection of gravitational waves

Gravitational waves were first witnessed in September 2015. Scientists observed the waves that were a result of two black holes colliding. These black holes were said to possess masses several times that of the sun. The black holes were attracted to each other due to the gravitational forces and slowly, over the course of several years, began to spiral into each other. One day, they finally merged. Before they merged, they let out gravitational waves that were felt on earth billions of years later in 2015.

This was picked up by a detector called Laser Interferometer Gravitational Wave Observatory (LIGO). This signal was very short lived and lasted only a fifth of a second. These wobbles in space-time picked up by the LIGO was thousands of times smaller than the nuclei of atoms. This is because the gravitational waves over the course of time gradually became weaker. The Laser Interferometers were configured in such a way that even these small ripples could be picked up.

LIGO consists of two gigantic laser interferometers located thousands of kilometres apart. Each detector consists of two 4km long steel vacuum tubes arranged in an ‘L’ shape. A special covering is provided to these tubes to ensure protection from the environment.

Aerial View Of LIGO Hanford

Aerial view of the LIGO Hanford Observatory. (Source: Caltech/MIT/LIGO Laboratory)

These tubes are the arms. The lengths of these arms are measured with lasers. If the lengths are changing, this could be due to compression and relaxation of arms due to gravitational waves. Studying these gravitational waves enables scientists to derive certain information about the objects that produced them. Information such as the mass and size of the orbit of the object that created the wave can be extracted from studying these gravitational waves. In the year 2017, The Nobel Prize in Physics was received by Rainer Weiss, Kip Thorne and Barry Barish for their role in the detection of gravitational waves.

Today, LIGO is trying to detect Gravitational waves with even more sensitive instruments in hope to detect more merging neutron stars and black holes and maybe some new discoveries too

Significance of gravitational waves

These gravitational waves help scientists gain information about the physical properties of the objects that created the waves. These gravitational waves provide a new way to observe the universe. A way that never existed previously.

The detection of the gravitational waves allows us to understand interactions in the universe in a completely new way. The waves detectable by LIGO are waves generated due to the collision of two black holes, exploding stars, or perhaps the birth of the Universe.

Before this form of understanding the universe was realized, most observations of the universe were made based on electromagnetic radiation. Something like the collision of black holes would have been impossible to have been picked up by electromagnetic radiation.

A major difference between gravitational waves and electromagnetic waves is the fact that gravitational waves interact very weakly with matter. Electromagnetic radiation, on the other hand, reacts strongly with matter and could face several alterations in its properties. Gravitational waves can travel through the universe virtually unimpeded.

The information, such as the mass and orbit of the object that caused the waves could be understood in a clearer manner. The information carried by the waves is free from any alterations or distortions that result from interaction with matter present in the universe.

The gravitational waves can also penetrate regions of space that electromagnetic radiation cannot. These properties have led to the creation of a new field of astronomy, called gravitational field astronomy. Gravitational field astronomy aims to study large entities in the universe and their interactions through unadulterated properties of gravitational waves.

Famous basketball player, John Wooden once said, “It’s the little things that are vital. Little things make big things happen”. In the case of gravitational waves, the little things are the ones that provide the knowledge of the larger things. Little observations made on the properties and complexities of the gravitational waves are what gives rise to the details pertaining to the larger bodies existing in the universe. There is no denying the fruitfulness of the existence of gravitational waves. One can even go so far as to say that gravitational waves have revolutionized physics. I can say without a cloud of uncertainty that gravitational waves will surely help us uncover more secrets of the universe in the future.

Read More:

  1. Four new gravitational wave detections announced, including the most massive yet
  2. Why Don’t Gravitational Waves Get Weaker Like The Gravitational Force Does?
solar panels array

How Solar Cells Work and are They Important for Our Future?

Solar cell technology: How it works and the future of sunshine

Why do we waste time drilling for oil and shoveling coal once there is a mammoth powerhouse within the sky up on top of us, causing out clean, non-stop energy for free? The Sun, an agitated ball of atomic energy, has enough fuel aboard to drive our scheme for an additional 5 billion years—and solar panels will flip this energy into an endless, convenient provider of electricity.

energy-generation-worldwide-by-wikipedia

Image Source: Wikipedia

Solar power might sound strange or futurist, however, it’s already quite commonplace. You may have a solar-powered quartz watch on your wrist joint or a solar-powered calculating machine. Many folks have solar-powered lights in their garden. Spaceships and satellites typically have solar panels on them too. The yank house agency NASA has even developed a solar-powered plane! As warming continues to threaten our surroundings, there looks very little doubt that solar energy can become a fair additional vital style of renewable energy within the future. However specifically will it work?

How much energy are we talking about?

Solar power is wonderful. On average, each square measure of layer receives 164 watts of alternative energy (a figure we’ll make a case for in additional detail during a moment). In alternative words, you may stand a very powerful (150 watt) lamp on each square measure of layer and lightweight up the entire planet with the Sun’s energy! Or, to place it otherwise, if we have a tendency to line only one p.c of the Sahara with solar panels, we have a tendency to may generate enough electricity to power the entire world. That is the smart factor concerning solar power: there is associate degree awful ton of it—much quite we have a tendency to may ever use.

But there is a drawback too. The energy the Sun sends out arrives on Earth as a combination of sunshine and warmth. each of those area units implausibly important—the light-weight makes plants grow, providing us with food, whereas the {warmth} keeps us warm enough to survive—but we will not use either the Sun’s light-weight or heat on to run a TV or an automobile. We have to search out how of changing alternative energy into alternative styles of energy we will use a lot of simple, like electricity and that is specifically what solar cells do.

What are solar cells?

Solar power is rattling. On average, every area unit of layer receives 164 watts of other energy (a figure we’ll build a case for an extra detail throughout a moment). In different words, you will stand an awfully powerful (150 watt) lamp on every area unit of layer and light-weight up the complete planet with the Sun’s energy! Or, to put it otherwise, if we have an inclination to line only 1 p.c of the Sahara Desert with solar panels, we have an inclination to could generate enough electricity to power the complete world. That’s the good issue regarding solar power: there’s academic degree awful ton of it—much quite we have an inclination to could ever use.

solar cell principle

Image Source : Wikipedia

But there’s a downside too. The energy the Sun sends out arrives on Earth as a mixture of sunshine and heat. every of these space units incredibly important—the light-weight makes plants grow, providing us with food, whereas the keeps us heat enough to survive—but we’ll not use either the Sun’s light-weight or heat on to run a TV or associate degree automobile. We’ve to look out however of fixing energy into different types of energy we’ll use a great deal of easy, like electricity. Which is specifically what solar cells do.

Just like the cells in a very battery, the cells in a very electrical device area unit designed to come up with electricity; however wherever a battery’s cells build electricity from chemicals, a solar panel’s cells generate power by capturing daylight instead. they’re generally known as electrical phenomenon (PV) cells as a result of they use daylight (“photo” comes from the Greek word for light) to form electricity (the word “voltaic” could be a relation to Italian electricity pioneer Alessandro Conte Alessandro Giuseppe Antonio Anastasio Volta, 1745–1827).

We can think about light-weight as being made from little particles known as photons, therefore a beam of daylight is sort of a bright yellow hose shooting trillions upon trillions of photons our means. Stick a photovoltaic cell in its path and it catches these energetic photons and converts them into a flow of electrons—a current. Every cell generates a number of volts of electricity, therefore a solar panel’s job is to mix the energy made by several cells to form a helpful quantity of electrical current and voltage. Nearly all of today’s solar cells area unit made up of slices of Si (one of the foremost common chemical parts on Earth, found in sand), though as we’ll see shortly, a range of different materials is often used similarly (or instead). Once daylight shines on a photovoltaic cell, the energy it carries blasts electrons out of the Si. These are often forced to flow around an electrical circuit and power something that runs on electricity.

How do solar cells work?

Solar cells convert the sun’s energy or solar energy into electricity. Whether or not they’re adorning your calculator or orbiting our planet on satellites, they admit the photoelectrical effect: the flexibility of concern emit electrons once a light-weight is shone thereon.

Silicon is what’s called a semiconductor, which means that it shares a number of the properties of metals and a few of these of an electrical non-conductor, creating it a key ingredient in solar cells. Let’s take a better inspect what happens once the sun shines onto a cell.

solar-cell-working

Sunlight consists of minuscule particles known as photons, which radiate from the sun. As these hit the element atoms of the cell, they transfer their energy to lose electrons, sound them clean off the atoms. The photons might be compared to the white ball in an exceedingly game of pool that passes on its energy to the colored balls it strikes.

Freeing up electrons is but solely the work of a star cell: it then has to herd these stray electrons into an electrical current. This involves making an electrical imbalance at intervals the cell, that acts a small amount sort of a slope down that the electrons can flow within the same direction.

Creating this imbalance is formed attainable by the interior organization of element. Element atoms area unit organized along in an exceedingly tightly certain structure. By compression little quantities of different parts into this structure, 2 differing kinds of element area unit created: n-type, that has spare electrons, and p-type, that is missing electrons, going away ‘holes’ in their place.

When these 2 materials area unit placed facet by facet within a cell, the n-type element’s spare electrons skip filling the gaps within the p-type silicon. This suggests that the n-type element becomes charged, and therefore the p-type element is charged, making an electrical field across the cell. As a result of the element may be a semiconductor, it will act as a non-conductor, maintaining this imbalance.

As the photons smash the electrons of the element atoms, this field drives them on in an orderly manner, providing the electrical current to power calculators, satellites and everything in between.

Are solar cells important for our future?

Solar energy has unbroken our species alive for thousands of years: heat, light, and crops. However, harnessing this energy to come up with electricity is, relatively, a really recent development. Because the Royal Society of London for Improving Natural Knowledge of Chemistry says, “The quantity of energy reaching the Earth’s surface each hour would meet the world’s current energy demands for a complete year… we have a tendency to not ought to gamble the lifestyles of future generations”. Additionally, technology is continually being improved and refined. But how, specifically, alternative energy be of profit in our lives and people of future generations worldwide?

The most obvious professionals of alternative energy, as we have a tendency to at solar Action Alliance indicate, a square measure that’s that it’s rife, property, free, secure, and reliable. Even in less sunny countries like the UK, there’s enough energy within the rays that reach the surface to come up with electricity. However, sunny locations like Calif., square measure ideal for a solar.

Just as individual households or businesses are able to do independence in reference to an influence provide, communities and cities will do a similar with whole communities living off-grid and being self-sustaining. In a world of restricted and strained resources, this can be a large advantage… and one that may be progressively necessary within the future.

Small, rural, and/or less affluent communities, regardless of however remote, won’t get to trust massive energy suppliers and their infrastructures or wait a protracted time for services to achieve them. Solar kits will reach any community and be fitted to homes, schools, clinics, and so on.

The fact that solar panels and systems square measure currently obtainable in varied sizes, shapes, and thicknesses conjointly make them much more versatile in terms of applications and wherever they will be used. New applications are perpetually being found and installations being created. There’s no reason to believe the longer term ones won’t be even a lot of exciting and liberating.

Is Time Travel Possible

Is Time Travel Possible? Physics Behind Time Travel

We all travel in time, don’t we? From the last year, we’ve moved up one year. Another way to say this is that we all are travelling forward at the same speed. But our topic at hand is, can we travel faster or slower? Or can we travel backwards or forward in time? It is indeed kind of mind-boggling to wrap our whole head around that concept. And there are countless imaginative theories. What if time-travel was possible? Would we be able to prevent something bad from happening? But if so, then what’s the guarantee that something more ominous might not happen? Let us dive deep into the depth of it all. Is all of this science fiction or is it truly possible?

Content

  1. Physics behind time travel
  2. Is time travel possible?
  3. Some paradoxes and facts about Time-Travel
  4. Wrapping up!

Physics behind time travel

To understand the concepts of time travel you need to understand a few theories and about a few hypothetical things.

The first name we get to our mind while talking about Time Travel is Albert Einstein and his Theory of Relativity. Understanding these theories completely is very difficult and there are very less people in the world who understand it completely. But this theory proves two special things with which we can travel in time. They are

1. If we travel with speeds closer to the speed of light, time will move slower for us (by the Special Theory of Relativity). But achieving such speed is very difficult and the reason again comes from Einstein. Einstein gave a mass velocity relation which tells that our inertial mass increases with velocity. The equation is

einsteins mass velocity relation

Einstein’s Mass Velocity Equation

Where,

  • is the magnitude of the velocity
  • is the speed of light
  • m0 is the rest mass of the body
  • m is the relativistic mass

2. Gravity distorts space and time and time moves slower in places with high gravitation (by the General Theory of Relativity). Know more about Gravity time dilation.

The Theory of General Relativity predicts the existence of something called Wormholes. A wormhole is a special solution to Einstein’s Field Equation. Wormholes are like passages or shortcuts between two points in space. Physicists say that we can travel in time through Wormholes but there are serious problems. We will discuss the problems in the next section.

One more hypothetical thing one needs to know is Exotic Matter. Exotic Matter is such a matter which have negative mass and repels the mass we see. At first, scientists believed that exotic matter cannot exist as it contradicts Einstein’s theories but some of the researchers have claimed that they have found a solution to Einsteins General theory of relativity which allows the existence of negative mass.

Is time travel possible?

The BBC’s long-running science-fiction series Doctor Who, celebrating its fiftieth day of remembrance on twenty-three Nov, centres on its name character’s adventures through time and house. However, he may extremely skip between totally different periods of history at will?

Travelling forwards in time is amazingly simple. Einstein’s special theory of relativity, developed in 1905, made it clear that if we can travel at speeds close to the speed of light, we can travel into the future. Thanks to Einstein

Time travel used to be thought of as just science fiction, but Einstein's general theory of relativity allows for the possibility that we could warp space-time so much that you could go off in a rocket and return before you set… Click To Tweet

If one were to go away from Earth inside a spacecraft moving at a considerable fraction of light speed, and is available back, solely a number of years may need to be passed on board however many years may have gone along on Earth. This leads to the “twins paradox“. What is twins paradox? Suppose one of a twin goes on the above-mentioned spacecraft and comes back, he would find himself much younger than his twin.

There’s just one drawback, once after you travel into future, coming back to the time where you started is difficult. There is a possibility of travelling back in time if traversable wormholes exist in reality. Wormholes are known to exist at microscopic levels and even if traversable wormholes exist they would collapse in seconds because of gravity. To keep Wormholes open we would need Exotic matter which is still hypothetical.

Assuming exotic matter exists and wormholes also do, even then we can’t go to any point in past. First of all, we need to have a machine to travel through a wormhole and with that machine we can travel back only to the time when the machine was created. Even if we create machines which have no effect with time and if could travel back to any point in time, we still have problems like the Grandfather paradox.

More restrictively still, theoretical work by Kip Thorne of Caltech employing a partial unification of general theory of relativity with natural philosophy recommended that any hole that enables time travel would collapse as before long because it fashioned.
Thorne did, however, resolve a noticeable issue that might arise because of my time travel (within the orbit of general relativity). The “grandfather paradox” involves going back in time and accidentally killing one’s grandfather before one’s father is planned – preventing one’s own birth.

Not only that, if time travel becomes possible anyone could go into the past and change the future randomly which is very dangerous.

Some paradoxes and facts about Time-Travel

Time Travel

Time Travel (Credi: Pixabay)

  1. Infinite Loop Paradox

A man travels back into the past and marries a woman. After that, he returns to the present. The woman whom he married gets pregnant and has a son. After a few years, that son becomes the time traveller who goes to the past and marries the woman.

So who is the son and who is the father?

  1. Stephen Hawking once believed that time travel is impossible

Stephen Hawking used to think that time travel is impossible. He claimed there would be some physical law which would prevent time travel and he even named it as “chronology protection conjecture”. But in the following years, unable to find any such physical law, he changed his statement and he stated as below

“Time travel may be possible, but it is not practical.”--Stephen Hawking Click To Tweet

3. Many of us are time travellers

Many researches have proved that time flows quickly on higher altitudes on earth. Scientists have compared time from two atomic clocks, one was on a mountain and one was at sea level. The clock on the mountain was faster by 90 Billionths of a second.

So if you want to add a few billionths of a second to your life, stay in basements.

4. End of Humans Paradox

If someone travels back in time and kills the first human, there should be no life and the human who went there should disappear. What? These paradoxes really sound terrific.

There are many other paradoxes and theories, people say that

  • All great scientists could probably be time travels and didn’t know how  to go back
  • All the amazing structures like the Pyramids, Kailashnath Temple etc might be built by the time travellers and the list goes on

Space and time are two sides of the same coin

Space And Time are simultaneous phenomena (like mass and energy), and together form the fabric of the universe known as space-time. A demonstration of four-dimensional space-time’s inseparability is the fact that, as astronomers often remind us, we cannot look into space without looking back into time. We see the Moon as it was 1.2 seconds ago and the Sun as it was 8 minutes ago.

Also, in accordance with Einstein’s general theory of relativity, a massive object in space stretches the fabric of both the space and time around it. For example, our Sun’s mass bends its surrounding space so that the Earth moves in a straight line but also circles within the Sun’s curvature in space. The Sun’s effect on time is to slow it down, so time runs slower for those objects close to the massive object. Interestingly, gravity is the result of mass stretching the fabric of the space-time around it. Gravity also has an infinite range such that no matter how far apart two masses are in space they will always experience some gravitational pull towards each other. Theoretical physicists have tried to explain this phenomenon in terms of gravitons, S-Theory, and M-Theory, but even today a successful quantum theory of gravity is yet to be found.

Wrapping up!

While time travel does not appear possible — at least, possible in the sense that the humans would survive it — with the physics that we use today, the field is constantly changing. Advances in quantum theories could perhaps provide some understanding of how to overcome time travel paradoxes.

One possibility, although it would not necessarily lead to time travel, is solving the mystery of how certain particles can communicate instantaneously with each other faster than the speed of light.

In the meantime, however, interested time travellers can at least experience it vicariously through movies, television and books.

Dark Energy

Dark Energy and the Fate of the Universe

Dark Matter & the Ultimate Fate of the Universe

So what is dark energy?

Well, the easy answer is that we do not recognize.

It looks to contradict several of our understandings regarding the manner the universe works. We all recognize that light-weight waves, conjointly known as radiation, carry energy. You feel that energy the instant you step outside on a hot summer day.

More is unknown than is thought. we all know what quantity dark energy there’s as a result of we all know however it affects the universe’s enlargement. apart from that, it’s an entire mystery. however, it’s a very important mystery. It seems that roughly sixty-eight of the universe is dark energy. matter makes up concerning twenty-seventh. the remainder – everything on Earth, everything ever determined with all of our instruments, all traditional matter – adds up to but five-hitter of the universe. come back to think about it, perhaps it should not be referred to as “normal” matter the least bit since it’s such a tiny low fraction of the universe.

One clarification for dark energy is that it’s a property of area. the physicist was the primary person to understand that a vacant area isn’t anything. the area has superb properties, several of that are simply starting to be understood. the primary property that Einstein discovered is that it’s potential for extra space to come back into existence.

Then one version of Einstein’s gravity theory, the version that contains a constant, makes a second prediction: “empty space” will possess its own energy. as a result of this energy may be a property of the area itself, it’d not be diluted as area expands. As extra space comes into existence, a lot of this energy-of-space would seem. As a result, this way of energy would cause the universe to expand quicker and quicker. sadly, nobody understands why the constant ought to even be there, abundant less why it’d have precisely the right worth to cause the discovered acceleration of the universe.

Another rationalization for the way house acquires energy comes from the scientific theory of matter. during this theory, “empty space” is really choked with temporary (“virtual”) particles that regularly type and so disappear. however once physicists tried to calculate what quantity energy this is able to offer empty house, the solution came out wrong – wrong by a great deal. the amount came out 10120 times too massive. that is a one with a hundred and twenty zeros once it. It’s laborious to urge a solution that unhealthy. that the mystery continues.

Another rationalization for dark energy is that it’s a brand new quite high-octane energy fluid or field, one thing that fills all of the areas however one thing whose result on the enlargement of the universe is that the opposite of that of matter and traditional energy. Some theorists have named this “quintessence,” when the fifth part of the Greek philosophers. But, if quintessence is that the answer, we have a tendency to still do not know what it’s like, what it interacts with, or why it exists. that the mystery continues.

The last chance is that Einstein’s theory of gravity isn’t correct. that will not solely have an effect on the enlargement of the universe, however, it might additionally have an effect on the method that ordinary matter in galaxies and clusters of galaxies behaved. This truth would supply the way to make your mind up if the answer to the dark energy downside may be a new gravity theory or not: we have a tendency to might observe however galaxies close in clusters. however, if it will prove that a brand new theory of gravity is required, what quite a theory would it not be? however, might it properly describe the motion of the bodies within the system, as Einstein’s theory is thought to try toto, and still provide the U.S.A. with the various prediction for the universe that we have a tendency to need? There area unit candidate theories, however none area uncompelling. that the mystery continues.

The issue that’s required to make your mind up between dark energy potentialities – a property of area, a brand new dynamic fluid, or a brand new theory of gravity – is additional knowledge, higher knowledge.

Dark energy or dark matter?

Dark energy makes up most of the universe, however, substance additionally covers a sizeable chunk. Comprising nearly twenty-seven p.c of the universe, and eighty p.c of the matter, substance additionally plays a dominant role.

Like dark energy, substance continues to confound scientists. whereas dark energy could be a force that accounts for the increasing universe, substance explains, however, teams of objects operate along.

In the Fifties, scientists learning different galaxies expected gravity to cause the centres to rotate quicker than the outer edges, supported the distribution of the objects within them. To their surprise, each region revolved at a similar rate, indicating that the spiral galaxies contained considerably a lot of mass than they perceived to. Studies of gas within elliptical galaxies and of clusters of galaxies disclosed that this hidden matter was unfolded throughout the universe.
Scientists have a variety of potential candidates for substance, move to unbelievably dim objects to strange particles. however, regardless of the supply of each substance and dark energy, it’s clear that the universe is stricken by things that scientists cannotconventionally observe.

The fate of the Universe

The evolution of the universe is ruled by the number of matter and dark energy it contains, however, the densities of matter and dark energy—their concentrations inside given volume of space—are affected terribly otherwise by cosmic growth. we have a decent plan of what quantity matter the universe holds, and though we do not understand exactly what it’s, we have a tendency to do comprehend it is plagued by gravity. The key, then, to understanding the ultimate fate of the Universe lies in understanding the opposite half this dark equation: dark energy.

Currently, cosmologists perceive nearly nothing regarding dark energy albeit it seems to comprise regarding seventy % of the mass-energy content of the universe. they’re urgently seeking to uncover its elementary properties: its strength, its permanency, and any variation with direction. they need to learn the properties of matter before they will verify its influence on the increasing Universe.

This evolution in cosmic scale is schematically shown within the higher than the figure for many cosmologies. during a universe with a high density of matter, the Edwin Bubble growth that began with the large Bang continues to decelerate thanks to the gravitation attraction of the matter filling the universe, ending during a massive crunch. during a universe with a lower vital density of matter, the growth coasts. during a universe with dark energy additionally as matter, the initial slowing is reversed at late times by the increasing dominance of dark energy.

If the hypothetic dark energy continues to dominate the universe’s energy balance, then the present growth of house can still accelerate, exponentially. Structures that don’t seem to be already gravitationally certain can ultimately fly apart. the planet and therefore the Milky Way Galaxy would stay undisturbed whereas the remainder of the universe seems to run far from the USA.
The nature of dark energy is presently a matter of speculation. Some believe that dark energy could be “vacuum energy,” diagrammatic by the “cosmological constant” (Λ, the Greek capital letter lambda) normally relativity theory, a relentless uniform density of dark energy throughout all of the house that’s freelance of your time or the universe’s growth. This notion was introduced by Einstein and is according to our restricted observations so far. instead, dark energy would possibly vary with time. solely new sorts of observations will settle the difficulty.

Final Words

We do understand this: Since the area is everyplace, this dark energy force is everyplace, and its effects increase as area expands. In distinction, gravity’s force is stronger once things area unit close and weaker after they area unit so much apart. as a result of gravity is weakening with the enlargement of area, dark energy currently makes up over 2/3 of all the energy within the universe.
It sounds rather strange that we’ve got no firm plan regarding what makes up seventy-four of the universe. It’s as if we have a tendency to had explored all the land on the world Earth associate degreed ne’er all told our travels encountered an ocean. however currently that we’ve caught sight of the waves, we wish to grasp what this immense, strange, powerful entity extremely is.

The strangeness of dark energy is thrilling.

It shows scientists that there’s a spot in our information that must be crammed, beckoning the manner toward associate degree undiscovered realm of physics. we’ve got before the United States the proof that the cosmos could also be organized immensely otherwise than we have a tendency to imagine. Dark energy each signals that we have a tendency to still have a good deal to find out, and shows the United States that we have a tendency to stand poised for an additional nice leap in our understanding of the universe.

End of the Universe

End of the Universe

How will the universe end, and could anything survive?

The universe serves up spectacle after spectacle with so much ease and effortlessness that you cannot help but wonder how it has so many complexities hidden within its ulterior cloak of beauty. On the surface, the universe is magnificent and splendid. The immortal souls that are credited for creating it are not yet finished with it. Perhaps, they get lost in its admiration and in its beauty and lose track of the job at hand. The fact that the universe can be so alluring despite its intricacies is in itself worth cherishing. But, like all good things, the universe will come to an end.

The end of the universe is not near, however, it is inevitable. There might not be any need to set alarm bells ringing anytime in the near future, but, the universe does have an expiration date.There have been several theories on how the universe could end. If the universe has been a cause for fascination and you want to learn more about how it could potentially all end, then, this article is just for you. Read on.

Let’s start from the beginning, the Origin of the Universe

To predict an ending, you would have to understand the beginning. Like all spectacular things, the universe too had a spectacular origin. This beginning was the Big Bang. The Big Bang theory explains the evolution that the universe had to undergo. This theory states that the universe was initially extremely hot and dense.As time passed, the universe began to cool and expand.

big-bang

Image Source: Coldcreation

According to the Standard model, the four fundamental forces in the universe are gravity, strong and weak attractive forces and electromagnetic radiation. Of the four, gravity is considered to be the weakest. It is hypothesized that during the beginning of the universe that gravity was as strong as the other fundamental forces. All the matter in the universe was condensed into such small spaces that the gravity had to be extremely high. The universe did not stay in this condensed state for too long and began to expand. The expansion is considered to be perpetual and is taking place even while you are reading this.

What is really scary is the fact that the rate of this expansion keeps increasing every second. This expansion is credited to dark energy, but, nobody really knows for sure what it is. Here are the theories that try to explain how the universe could end.

The Big Rip

For as long as we have known, the universe has been expanding. During this process of expansion, lots and lots of space was created. Galaxies began to move apart since the space between them increased. Within the galaxy, the space also expanded. However, the gravity acted as the glue that kept it all together. The gravity provides the force that keeps the galaxies together. It is strong enough to negate the expansion. In the Big Rip scenario, the rate of expansion increases so drastically that it reaches a point where gravity cannot counter or negate the effect of the expansion of space. The acceleration of space expansion would be tremendously high.This causes the universe to, well, rip. This is what is referred to as the Big Rip.

This effect would start with the larger bodies and slowly propagate to the smaller bodies. It would first start with the galaxies. These galaxies would get ripped apart. Then, black holes, stars, and planets would die. Since the gravity is not strong enough, they would simply just dissolve into their constituents. Then these smaller components would disintegrate. Everything we know would get ripped apart.

Space would then start expanding so fast that it would be faster than even light! Atoms and subatomic particles would also tear apart. Since space is moving so fast, there would be no interaction between particles. So, even the small particles that remain after this massive expansion cannot interact with anything in the universe to form bigger particles. This universe would be so strange that when you compare it with today’s universe, it would seem ridiculous.The possibility is unfathomable, but, not impossible.

The Big Freeze

Simply put, the difference between the Big Freeze and the Big Rip is that in the Big Freeze scenario, matter does not disintegrate, it gets converted into radiation in a process that could take forever. To understand this, you will need to understand entropy. The second law of thermodynamics states that the entropy of an isolated system can never decrease, therefore, every body moves to a state which increases its entropy. This means that every body cools down and it disintegrates until it reaches some form of equilibrium. This is true for the universe as well. The matter in the universe slowly disintegrates and spreads out. Every body, whether big or small, will have its matter disintegrating into radiation.

The gas clouds required to generate stars would disintegrate. The universe will become an extremely dark place as a result. The suns would also disintegrate. Black holes would be the only entities left in the universe. These black holes, however, will also lose energy in the form of Hawking radiation and also disintegrate. Slowly but almost surely, only a few light particles would remain. But, even these will eventually decay. The universe would be reduced to nothing. A place of nothingness. Entropy would have reached its maximum, and the highest form of equilibrium would have been reached. The universe would have finally ended.

However, all hope is not lost. The phenomenon of quantum tunneling could cause a change in the entropy leading to another Big Bang. In this case, the universe would just restart as if nothing really happened.

The Big Crunch and The Big Bounce

Gravity, which is the weakest of all fundamental forces could one day become the most powerful. This is possible if the amount of dark energy reduces substantially over time. This would mean that the universe would simply stop expanding. This would mean that the rate of expansion would slow down at some point and keep slowing down until the process of expansion ceases. Then, it slows down even more and reverses. The universe, instead of growing, would begin to contract and become smaller and smaller. Galaxies will merge, and the universe will get significantly hotter. The temperatures would reach such high levels that bodies that cannot bear such temperatures would disintegrate. Everything will get denser.

Big Crunch by Wikipedia

Big Crunch Illustration. Image Source : Wikipedia

Black holes that consume everything close to them, would begin consuming bodies. As things get closer and closer, more objects would get closer to black holes. These black holes would consume everything including other black holes. The amount of gravity will be immense. All black holes will eventually form a single supermassive blackhole at the center of the universe. At the last moment of the Big Crunch, the entire universe would be consumed by the gigantic black hole and finally, it would consume itself. The Big Bounce theory states that this entire process has been taking place for a long while. According to the Big Crunch, the universe is stuck in a loop of expansion and contraction leading to many deaths and rebirths of the universe.

The timeline for the end of the universe

Our planet will cease to exist in about 1 billion years from now. The Sun would burn 10% brighter and the heat from the sun would dry up all the water on earth. All life will be extinguished. In about 5 to 8 billion years, the sun would undergo expansion to reach a size that is so big that it would devour most planets. In about 1 trillion years from now, all galaxies would merge into one. In 100 trillion years, we would enter the degenerate era. This era is marked by the death of all stars in the galaxies, which, results in black holes. In 10 to 100 quintillion years, everything would be consumed by black holes. In a decillion years time, we might have the black hole era, where the universe is dominated by black holes. Eventually, these black holes will lose energy in the form of Hawking radiation and die too. In about a googol year, the universe would cease to exist.

Erich Fromm, a renowned psychologist, and sociologist once said, “The quest for certainty blocks the search for meaning. Uncertainty is the very condition to impel man to unfold his powers”. There is so much uncertainty around. Everything in the universe is uncertain, so much so that even the universe itself is uncertain! The universe always has a clever way to teach important lessons. Uncertainty should compel humanity to make the most of the time we have.

The universe can die but it can start all over again. The reality that we observe today may not be considered reality at all in the distant future. Whether the universe ends or not, one thing is certain, the universe should be cherished and celebrated while we can all still bask in its splendor.

Big Bang and the Age of the Universe

Big Bang and the Age of the Universe

Astronomers calculated that the Big Bang occurred between twelve and fourteen billion years ago. To place this in perspective, the solar system is assumed to be 4.5 billion years old and humans have existed for a few million years.

Astronomers estimate the age of the universe in 2 ways:

  1. By trying to find the oldest stars
  2. By finding out the speed of expansion of the universe and extrapolating back to the Big Bang

Is it older than the stars?

Astronomers could place a lower limit to the age of the universe by studying about Globular clusters. These circular clusters are a dense assortment of roughly 1,000,000 stars. Stellar densities close to the middle of these clusters are huge. If we lived close to the middle of one, there would be several hundred thousand stars closer to us than the Proxima Centauri, the nearest star after the Sun.

The life cycle of a star is solely depended upon its mass. High Mass stars are a lot brighter than Low Mass stars; therefore they quickly burn through their supply of hydrogen fuel. A star just like the Sun has enough fuel in its core to burn at its current brightness for roughly nine billion years. A star that is twice as massive as the Sun will burn through its fuel supply in only 800 million years. A 10 solar mass star, a star that is 10 times more massive than the Sun, burns nearly a thousand times brighter and has only a 20 million year fuel supply. Conversely, a star that is half as massive as the Sun burns slowly enough for its fuel to last more than 20 billion years.

All the stars in a globular cluster are formed roughly at the same time; therefore they function like cosmic clocks. If a cluster is over twenty million years old, then all of its hydrogen-burning stars will be less massive than 10 solar masses. This suggests that no hydrogen-burning star is going to be over a thousand times brighter than the Sun. If a cluster is over two billion years old, then there’ll be no hydrogen-burning star more massive than 2 solar masses.

The oldest cluster contains only those stars which are less massive than 0.7 solar masses. Low Mass stars are a lot less dim than the Sun. This observation suggests that the oldest clusters are between 11 and 14 billion years old. The uncertainty in this estimate is because of the problem in finding the precise distance to cluster (hence, uncertainty within the brightness (and mass) of the stars in the cluster). Another source of uncertainty during this estimate lies in our ignorance of finer details of stellar evolution.

Astronomers also study some old stars and try to detect remaining dust from ancient supernova to have some more limits to the age of the universe.

However, there are some stars found which contradicts the currently believed age of 13.8 billion years. Read about one such star called HD 140283 here

Hubble constant

An alternative approach to estimate the age of the universe is to calculate the “Hubble constant”. The Hubble constant is a measure of the expansion rate of the universe. Cosmologists use this activity to extrapolate back to the Big Bang. This extrapolation depends on the history of the expansion rate that depends on the present density of the universe and on the composition of the universe.

If the universe is flat and composed largely of matter, then the age of the universe is

2/(3 Ho)

where Ho denotes the Hubble’s constant.

If the universe has a very low density of matter, then its extrapolated age is larger:

1/Ho

If the universe contains a form of matter similar to the cosmological constant, then the inferred age can be even larger.

Cosmic distance ladder

Many astronomers are operating exhaustingly to calculate the Hubble’s constant employing a type of completely different techniques. Till recently, the simplest estimates ranged from 65 km/sec/Megaparsec to 80 km/sec/Megaparsec. In additional acquainted units, astronomers believe that 1/Ho is between 12 and 14 billion years.

The latest news on Hubble constant:

Researchers detect abnormal rates in the expansion of universe

In the latest researches, the results have been shown that the universe is enlarging much quicker than it should be based on the conditions after Big Bang. The constantly increasing rate of the universe is known as Hubble Constant and it has been very hard to pin down the rate.

AN AGE CRISIS?

On comparing the two age determinations, there is a potential crisis. If the universe is flat and dominated by ordinary or dark matter, the age of the universe as estimated from the Hubble constant would be around 9 billion years. This would lead to a contradiction as the age of the universe would be shorter than the age of oldest stars. This contradiction implies that either

  1. Our measurement of the Hubble constant itself is incorrect
  2. The Big Bang theory has to be replaced
  3. That we need a form of matter like a cosmological constant that implies an older age for a given observed expansion rate.

Some astronomers believe that this crisis will pass as soon as measurements improve. If the astronomers who have measured the smaller values of the Hubble constant are correct, and if the smaller estimates of globular cluster ages are also correct, then all is well for the Big Bang theory, even without a cosmological constant.

WMAP satellite

Measurements by the WMAP (Wilkinson Microwave Anisotropy Probe) satellite facilitated and confirmed the age of the universe. By measuring the thermal radiation left over from the Big Bang(known as Cosmic Microwave Background), missions such as WMAP are able to determine the density, composition and expansion rate of the universe. As of 2013, WMAP determined these parameters with an accuracy of higher than 1.5%. In turn, knowing the composition with this precision, we could estimate the age of the universe to about 0.4%: 13.77 ± 0.059 billion years!

WMAP satellite artist depiction from NASA

WMAP satellite artist depiction. Image Source: NASA

How does WMAP data enable us to determine the age of the universe is 13.77 billion years, with an uncertainty of only 0.4%? The key to this is that by knowing the composition of matter and energy density in the universe, we will use Einstein’s theory of relativity to calculate how fast the universe has been expanding in the past. With this information, we will flip the clock back and estimate when the universe had “zero” size, in line with Einstein.

The time between then and now could be the age of the universe. There’s one caveat to keep in mind that affects the understanding of the age determination: we have a tendency to assume that the universe is flat, that is well supported by WMAP and alternative knowledge. If we relax this assumption, the uncertainty will increase. Inflation naturally predicts a really nearly flat universe.

The expansion age measured by WMAP is larger than the oldest globular clusters, so, Big Bang theory has passed a crucial test using data independent of the type collected by WMAP. If the expansion age measured by WMAP had been smaller than the oldest globular clusters, then there would be something wrong in either the Big Bang theory or the theory of stellar evolution. Either way, astronomers would have required rethinking several of their cherished concepts. However, our current estimate of age fits well with what we all know from other forms of measurements.

Final Words

So, in conclusion, we’ve 2 methods — one from our cosmic history and one by measuring native stars — that show us our Universe’s age is between thirteen and fourteen billion years. Today it is widely accepted that our universe in 13.772 billion years old with a possible error of 59 million years. However, there are a lot of observations and experiments going on to get more precise age of our universe

Bermuda Triangle

Bermuda Triangle: Mystery and Scientific Explanations

The Enduring Mystery of the Bermuda Triangle

The Bermuda Triangle, also known as the Devil’s Triangle has been the topic of controversies and mysteries and several tales to this day. Even its location is a topic of great mystery and confusion to this day. It is rumoured to be located in the Atlantic Ocean bordered by a line from Florida to the Bermuda islands, to Puerto Rico and then back to Florida.

The term “Bermuda Triangle” was initially employed in a piece written by Vincent H.Gaddis for Argosy magazine in 1964.

In the article, Gaddis claimed that during this strange ocean variety of ships and planes had disappeared while not clarification.

Gaddis wasn’t the primary one to return to the present conclusion, either.

As early as 1952, George X. Sands, during a report in Fate magazine, noted what sounded like a bizarrely sizable amount of strange accidents in this region.

Why do ships and planes seem to disappear in the region? Some authors theorize it may be due to a strange magnetic anomaly that affects compass calculations (in fact they claim Columbus noted this when he sailed through the area in 1492).

Scientific Explanations

“Rogue waves are one clarification and that they do occur within Bermuda’s region however by no suggests that unambiguously here — they’re much more common off the Cape of fine Hope,” explained Dr Boxall, A man of science and principal teacher at the U.K.’s University of Southampton. “They were things of story and sailors’ tales, however since the introduction of satellite systems capable of activity waves there are variations as huge as thirty m (100 feet) measured and verified.”

The rapscallion waves return and go terribly at random and quickly however are continually a part of a storm, in line with Boxall. “The heroic tale moving picture of a flat calm ocean with a 100ft wave touch the liner out of the blue is a story,” he told Fox News via email. The rapscallion waves, he added, wouldn’t deter him from taking a cruise.

The analysis was bestowed as a part of “The Bermuda Triangle Enigma,” a Channel five documentary series.

Boxall conjointly cited busy maritime traffic within the Bermuda Triangle because the key thinks about its name.
“The space lined by constellation accounts for nearly a 3rd of all in private owned vessels within the U.S.,” he said. “The 2016 armed service annual report shows that during this space eighty two % of all incidents involving marine traffic of any kind were caused by folks with no expertise or coaching. The numbers represent themselves on why such a large amount of incidents occur here.”

Conspiracy theories of Bermuda Triangle

  1. Gas Trapped

A large amount of methane gas is thought to exist below the bottom at bay within the sediments in a type of paraffin hydrates. If such gas finds its solution and starts rising through the water, it will considerably scale back the density of water therein space. And ships passing over that space will sink in no time. Such gas, when unleashed, can even produce explosions and saturate the atmosphere with methane gas inflicting planes to crash.

  1. Strange clouds

Scientists have noticed the formation of strange hexangular formed clouds with straight edges on the Atlantic Ocean. This is often an odd and rare phenomenon. Meteorologists make sure from alternative such formations of cloud at sea and evidence shown by satellite pictures that they’re like air bombs. The air bombs will blast and send winds to the ocean at a lower place at speeds of up to one hundred seventy miles per hour which might be dangerous for craft or ships passing through it.

Additionally, such air bomb explosion will produce mammoth waves as high as 45-foot and ocean surface wind of regarding a hundred miles per hour that can also be very dangerous.

  1. Underwater reefs

The island, additionally called the ‘Isle of the devils’, forms one corner of a constellation and is found regarding 650 miles off the geographic region of America. It’s an incontrovertible fact that the island is utterly ringed by varied shipwrecks that lie at the bottom near its shores. If truth be told there are over three hundred ships that destroyed inside two hundred sq. miles of water space encompassing island.

So why the bottom here has become a ships’ graveyard? the solution is thought… there are varied underneath water reefs encompassing island that rise from the lowest of the ocean and stay perilously hidden under the water surface. Not too way back the captains of the ships had to believe entirely on compass and guidance charts (and sometimes on the position of the stars) to navigate through the ocean to achieve their destinations. And unwittingly once the ships ignored such hidden reefs, usually, the hulls of the ships were torn apart by treacherous reefs, sinking them in no time.

With the advancement of technology and the use of contemporary GPS systems, these reefs will currently be noticed and avoided. Several of such wrecks these days are renowned sites for skin diving.

  1. Strange whirlpools

A strange development has been noticed in the Bahama Islands that is found at the western corner of the area and concerning fifty miles off the coast of FL. There are whirlpools here with terribly sturdy periodic event currents flowing in and out of them. Any ships passing over them will simply get sucked in and into the endless depths here.

In fact, such phenomena have been legendary to the natives here since ages associate degree associate degree ancient belief says there’s an underwater monster that breathes in and out. Throughout inhalation, it will suck in folks simply or perhaps ships. But the important facts have currently been legendary.

There are literally several Blue Holes in Bahama Islands water space… these are giant underwater caves or cavities that are shaped through earth science transformations. These bottle formed caves that have their openings close to the water surface will have depths of 100s of feet. The most important such Blue Hole in Bahama Islands (and second deepest within the world) is Dean’s Blue Hole. it’s a depth of 663ft.

Divers have discovered that deep below within the Blue Holes, there are several lateral tunnels that have originated from the walls of the blue hole (i.e. from walls of the most underwater cave) and that they last miles in numerous directions. Water flows in and out of those lateral tunnels throughout the tide amendment which truly causes the periodic event currents on the ocean surface and also the whirlpools. And these whirlpools may be extraordinarily dangerous for ships passing over them or perhaps close to their edge.

  1. Compass anomalies

Do you understand that magnetic and absolute North isn’t identical? Which implies that the north wherever a compass points and therefore the absolute geographic north that is that the North Pole is completely different. Therefore ships got to create an adjustment for this distinction to stay in the correct direction. However, in the area, there’s a slim strip wherever each these North’s become identical. Some claim that such Compass Variation may are the cause for fatal accidents as ships didn’t verify the right direction.

  1. Strange weather

At times there are violent storms within the Atlantic space. These short however intense storms will build up quickly and depart thus quick that even a satellite cannot discover them properly. However, these storms are robust enough to destroy ships or planes utterly. There are waterspouts seen during this space. A waterspout is sort of a tornado baffled that sucks water from the ocean thousands of feet into the sky.

Hurricanes are extraordinarily powerful whirling storms that generally seem within the Atlantic close to the equator. they typically originate from south Japanese Atlantic and have the Atlantic space towards the south Japanese coast of the U.S.A. June to Gregorian calendar month is that the time once a chance of such cyclone occurring is that the most.

Such hurricanes have traditionally been the cause for loss of the many lives and in-depth harm. The sinking of Francisco Delaware Bobadilla’s Spanish fleet in 1502 was the primary recorded instance of such damaging cyclone. Hurricanes have within the past caused a variety of fatal damages to the sailing vessels passing through the realm.

  1. What lies at the bottom?

The seafloor in country space is additionally found to be quite strange. The technology of measuring device mapping (using sound waves) has been utilized by the scientists to grasp the depth of the seafloor at varied places within the triangle. Some uncommon formations are found. At varied places from a mild slope, the seafloor takes an unforeseen deep drop. In fact, a number of the deepest trenches within the world are found during this space. Ships or planes that sink into these deep trenches can in all probability ne’er be found as they’re just about inaccessible.

One such space is at the Bahamas that is found at the western corner of the area. It’s been found that at some specific water areas here, the seafloor suddenly dips to a colossal depth of fifteen thousand ft.

Scientists conjointly speculate that there are often giant deep ocean craters on the ocean floor of the country. This may be caused by a great number of oil leaks or exploding of gas that was cornered at totally different layers below the ocean floor. Such large craters (about a mile wide and 150ft deep) have already been discovered at Barent Ocean off the coast of Noreg in March 2016. Similar such deep ocean craters are seemingly to exist in country furthermore as a result of the ocean floor within the space is thought to contain a great amount of gas. If a ship is destroyed because of gas blow out or the other reason and drops into the crater, it will simply disappear while not effort any trace.

Wrapping it UP!!!

As a kid, many have revealed within the mysteries of the Atlantic, gushing over literature that told of ghost ships, of planes disappearing forever, of instruments going haywire. Even adults, with pictures from their youth clear in their head, many have spent a lot of time at intervals the boundaries of the alarming Triangle, a swath of the ocean between Bermuda. Let’s hope one day we can solve with actual evidence of the great mystery that is Bermuda Triangle.