Login with your Social Account

Researchers come up with battery models powering more than a million miles

Researchers come up with battery models powering more than a million miles

Jeffrey Dahn and his research group from Dalhousie University, Nova Scotia has filed for a new patent on lithium battery technology which can power more than a million miles. Dahn holds an exclusive agreement with Tesla and his team has published the testing results on new batteries which according to them can be used as benchmarks for other scientists dealing with similar technologies. The report can be found in the Journal of the Electrochemical Society.

The most innovative section of the battery used by Dahn’s team is the cathode. Different batteries use different types of lithium compounds for achieving good characteristics. Dahn’s team has been investigating on NMC –  lithium nickel manganese cobalt oxide. This material has been used by several other electric vehicle makers in the past such as Nissan and Chevrolet but not Tesla. Dahn uses synthetic graphite for anode with the electrode being a blend of lithium salts and several other ionic compounds. These components do not differ much in compositions used by other makers however Dahn’s team used a different technique for the NMC cathode’s structure. The team used large single crystals replacing smaller ones which would develop lesser cracks as the battery goes through charged and discharged states. 

Battery research has been mostly focused on increasing the range that can be powered in a single charge. Dahn, on the other hand, has focused on improving the battery’s overall lifetime making it suitable for self-driving taxis and electric trucks that are expected to go through several charges and discharge cycles. The current Tesla battery pack lasts for 300,000 to 500,000 miles which is not enough. On the other hand, batteries in this paper are expected to last 4000 charges – four times more than the present commercial batteries. 

Since the paper has been categorized for “benchmarking”, it implies that the batteries mentioned in the paper would not be used by Tesla in its vehicles. Dahn mentioned that these batteries are capable of powering an electric vehicle for more than a million miles while lasting two decades in grid energy storage. 

Tesla and Dahn were awarded the patent for a single crystal NMC battery with an additive named ODTO, similar to the description in the paper, which has been described by Dahn’s team in another paper last year. There is still room for improvement in the batteries described in the current paper as the specific energy density of mentioned batteries is lesser than the maximum ability of advanced Li-ion batteries. There is a possibility of Li-ion batteries powering more than 500kms in a single charge.

Reference: Journal of the Electrochemical Society.

Astronomers detect three supermassive black holes at the center of three colliding galaxies

Astronomers detect three supermassive black holes at the center of three colliding galaxies

Three supermassive black holes (SMBHs) glowing in x-ray emissions have been identified by astronomers at the center of three colliding galaxies a billion light-years away from Earth. All three black holes are active galactic nuclei(AGN), consuming material. This finding may clarify a long-standing issue in astrophysics and black hole mergers known as “final parsec problem”. The study appears in The Astrophysical Journal.

Researchers detected the three SMBHs with the data from several telescopes, Sloan Digital Sky Survey (SDSS,) the Chandra X-ray Observatory, and the Wide-field Infrared Survey Explorer (WISE)A nearly unbelievably astronomical event, the fusion of three galaxies may play a crucial role in how the most massive black holes expand over time.

Ryan Pfeifle from George Mason University in Fairfax, Virginia, the paper’s first author said that they found this incredible system through their selection technique while they were only looking for black hole pairs. He also added that this is the most powerful evidence found for such a triple system of active supermassive black holes. It is very challenging to locate triple black hole systems since they are wrapped in gas and dust. It took several telescopes functioning in different parts of the electromagnetic spectrum and also the work with researchers to detect these black holes.

Co-author Shobita Satyapal, also belonging to George Mason said that dual and triple black holes are extremely rare but such systems are actually a natural outcome of galaxy mergers, through which galaxies grow. This triple-merger was first spotted in visible light by the SDSS and only through a citizen science project named Galaxy Zoo the system of colliding galaxies was detected. The system was in a state of galaxy merger glowing in the infrared as seen by the WISE when more than one black holes were expected to be feeding.

Researchers shifted to the Chandra Observatory and the Large Binocular Telescope (LBT) for confirmation as Sloan and WISE data were fascinating clues. Chandra observations revealed bright x-ray sources in the galactic centers where SMBHs are expected to detect. Chandra and Nuclear Spectroscopic Telescope Array (NuSTAR) satellite of NASA discovered more shreds of evidence showing the presence of SMBHs and the existence of large amounts of gas and dust near one of them. It was expected in merging of black holes. Spectral evidence received by optical light data from SDSS and  LBT shows that these are characteristics of the feeding SMBHs.

Christina Manzano-King, co-author from the University of California, Riverside said that optical spectra include plenty of information about a galaxy which is frequently used to detect active accreting supermassive black holes and can tell about their influence on the inhabitant galaxies. Pfeifle said that they have found a new method of identifying triple supermassive black holes using these major observatories as each telescope gives them a distinct idea about these systems. They expect to extend their work to find more triples using the same method.

The final parsec problem is a theoretical problem that is fundamental to our understanding of binary black hole mergers that states that the enormous orbital energy of two approaching black holes stops them from merging. They can get separated by a few light-years, then the merging process stables.

The hyperbolic trajectories of two initially approaching black hole carry them right past each other. The two holes catapult the stars as they interact with them in their proximity transferring a fraction of their orbital energy to a star every time. The energy of the black holes gets reduced by the emission of gravitational waves. The two black holes finally slow down and approach each other more closely shedding enough orbital energy finally getting within just a few parsecs of each other. More matter is discharged via sling-shotting as they come closer. As a result, for the black holes, no more matter is left to interact with and shed more orbital energy. The merging process halts.

Astronomers know that strong gravitational waves are responsible for black hole mergers.LIGO (Laser Interferometry Gravitational-Wave Observatory) discovers a black hole merger almost every week. The final parsec problem is about how they merge with each other finally. Researchers think that a third black hole like seen in this system could give the push needed for the black holes to get merged. Nearly 16% of supermassive black hole pairs in colliding galaxies are expected to interact with a third supermassive black hole before they merge.

The challenge is that gravitational waves produced during merging would be too low-frequency for LIGO or the VIRGO observatory to detect. Researchers may have to depend on future observatories like LISA, ESA/NASA’s Laser Interferometer Space Antenna to detect those waves. LISA is better-equipped than LIGO or VIRGO to detect merging of giant and massive black holes as it can detect lower frequency gravitational waves.

Reference: The Astrophysical Journal.

This flat structure morphs into shape of a human face when temperature changes

This flat structure morphs into shape of a human face when temperature changes

Researchers at MIT and elsewhere have designed 3-D printed mesh-like structures that morph from flat layers into predetermined shapes, in response to changes in ambient temperature. The new structures can transform into configurations that are more complex than what other shape-shifting materials and structures can achieve.

As a demonstration, the researchers printed a flat mesh that, when exposed to a certain temperature difference, deforms into the shape of a human face. They also designed a mesh embedded with conductive liquid metal, that curves into a dome to form an active antenna, the resonance frequency of which changes as it deforms.

The team’s new design method can be used to determine the specific pattern of flat mesh structures to print, given the material’s properties, in order to make the structure transform into a desired shape.

The researchers say that down the road, their technique may be used to design deployable structures, such as tents or coverings that automatically unfurl and inflate in response to changes in temperature or other ambient conditions.

Such complex, shape-shifting structures could also be of use as stents or scaffolds for artificial tissue, or as deformable lenses in telescopes. Wim van Rees, assistant professor of mechanical engineering at MIT, also sees applications in soft robotics.

“I’d like to see this incorporated in, for example, a robotic jellyfish that changes shape to swim as we put it in water,” says van Rees. “If you could use this as an actuator, like an artificial muscle, the actuator could be any arbitrary shape that transforms into another arbitrary shape. Then you’re entering an entirely new design space in soft robotics.”

Van Rees and his colleagues are publishing their results this week in the Proceedings of the National Academy of Sciences. His co-authors are J. William Boley of Boston University; Ryan Truby, Arda Kotikian, Jennifer Lewis, and L. Mahadevan of Harvard University; Charles Lissandrello of Draper Laboratory; and Mark Horenstein of Boston University.

Gift wrap’s limit

Two years ago, van Rees came up with a theoretical design for how to transform a thin flat sheet into a complex shape such as a human face. Until then, researchers in the field of 4-D materials — materials designed to deform over time — had developed ways for certain materials to change, or morph, but only into relatively simple structures.

“My goal was to start with a complex 3-D shape that we want to achieve, like a human face, and then ask, ‘How do we program a material so it gets there?’” van Rees says. “That’s a problem of inverse design.”

He came up with a formula to compute the expansion and contraction that regions of a bilayer material sheet would have to achieve in order to reach a desired shape, and developed a code to simulate this in a theoretical material. He then put the formula to work, and visualized how the method could transform a flat, continuous disc into a complex human face.

But he and his collaborators quickly found that the method wouldn’t apply to most physical materials, at least if they were trying to work with continuous sheets. While van Rees used a continuous sheet for his simulations, it was of an idealized material, with no physical constraints on the amount of expansion and contraction it could achieve. Most materials, in contrast, have very limited growth capabilities. This limitation has profound consequences on a property known as double curvature, meaning a surface that can curve simultaneously in two perpendicular directions — an effect that is described in an almost 200-year-old theorem by Carl Friedrich Gauss called the Theorema Egregium, Latin for “Remarkable Theorem.”

If you’ve ever tried to gift wrap a soccer ball, you’ve experienced this concept in practice: To transform paper, which has no curvature at all, to the shape of a ball, which has positive double curvature, you have to crease and crumple the paper at the sides and bottom to completely wrap the ball. In other words, for the paper sheet to adapt to a shape with double curvature, it would have to stretch or contract, or both, in the necessary places to wrap a ball uniformly.

To impart double curvature to a shape-shifting sheet, the researchers switched the basis of the structure from a continuous sheet to a lattice, or mesh. The idea was twofold: first, a temperature-induced bending of the lattice’s ribs would result in much larger expansions and contractions of the mesh nodes, than could be achieved in a continuous sheet. Second, the voids in the lattice can easily accommodate large changes in surface area when the ribs are designed to grow at different rates across the sheet.

The researchers also designed each individual rib of the lattice to bend by a predetermined degree in order to create the shape of, say, a nose rather than an eye-socket.

For each rib, they incorporated four skinnier ribs, arranging two to line up atop the other two. All four miniribs were made from carefully selected variations of the same base material, to calibrate the required different responses to temperature.

When the four miniribs were bonded together in the printing process to form one larger rib, the rib as a whole could curve due to the difference in temperature response between the materials of the smaller ribs: If one material is more responsive to temperature, it may prefer to elongate. But because it is bonded to a less responsive rib, which resists the elongation, the whole rib will curve instead.

The researchers can play with the arrangement of the four ribs to “preprogram” whether the rib as a whole curves up to form part of a nose, or dips down as part of an eye socket.

Shapes unlocked

To fabricate a lattice that changes into the shape of a human face, the researchers started with a 3-D image of a face — to be specific, the face of Gauss, whose principles of geometry underly much of the team’s approach. From this image, they created a map of the distances a flat surface would require to rise up or dip down to conform to the shape of the face. Van Rees then devised an algorithm to translate these distances into a lattice with a specific pattern of ribs, and ratios of miniribs within each rib.

The team printed the lattice from PDMS, a common rubbery material which naturally expands when exposed to an increase in temperature. They adjusted the material’s temperature responsiveness by infusing one solution of it with glass fibers, making it physically stiffer and more resistant to a change in temperature. After printing lattice patterns of the material, they cured the lattice in a 250-degree-Celsius oven, then took it out and placed it in a saltwater bath, where it cooled to room temperature and morphed into the shape of a human face.

Courtesy of the researchers

The team also printed a latticed disc made from ribs embedded with a liquid metal ink — an antenna of sorts, that changed its resonant frequency as the lattice transformed into a dome.

Van Rees and his colleagues are currently investigating ways to apply the design of complex shape-shifting to stiffer materials, for sturdier applications, such as temperature-responsive tents and self-propelling fins and wings.

This research was supported, in part, by the National Science Foundation, and Draper Laboratory.

Materials provided by Massachusetts Institute of Technology

Researchers develop new chip to bridge the gap between quantum and classical computing

The Gap between quantum and classical computing is bridged by this new chip

Quantum computers existing today are limited versions of the futuristic quantum computers that we hope to achieve in the future. However, scientists have created the hardware for the “probabilistic computer” – a device to bridge the gap between the standard PCs of today and the genuine quantum computers. The study appears in the Nature journal. 

This probabilistic computer can solve quantum problems using a special trick. It uses a p-bit which is described by the research team as “poor man’s qubit”. In classical computing, a bit can either take the value 1 or 0, while qubits can take both of these values at the same time as per the laws of quantum computing. Meanwhile, the p-bit can take only 1 or 0 at a time, but the switch between two states occurs very quickly. Using the fluctuations properly, researchers can tackle the problems that are considered quantum computing problems without using a real quantum computer. 

In addition to this, the p-bit can operate at room temperature whereas the qubits need super-cold conditions for their operation. P-bits can be easily adapted to the existing computers. Supriyo Datta, an electrical engineer at Purdue University, in Indiana, said that there are a group of problems solved with the help of qubits that can also be solved by the p-bits. Hence getting the name “poor man’s qubit”. 

The result of the research has been a modified magnetoresistive random access memory(MRAM) device for storing information in the computers of the present day. Magnetic orientations are used to represent 0s or 1s using states of resistance. Eight custom-made MRAM p-bit units were put with a controller chip to create a probabilistic computer – where units are used to take a specific value. 

Scientists were able to solve the integer factorization problems, which are usually considered quantum problems. It can also be solved by classical computers however with lesser efficiency. The probabilistic computer along with p-bits represents a middle ground between two ends. Scientists feel that the fully developed p-bit computers would solve integer factorization problems with lesser energy and time than the computers of the present day. 

Ahmed Zeeshan Pervaiz, Purdue University said that the circuit occupies the same area as that of a transistor but performs the function which would take several thousand transistors to perform. The calculation speed could also be increased by parallel operation of a huge number of p-bits. 

For the practical use of these machines, there is a need for more refining which would not take much time. After that, these can handle certain problems until the final leap in quantum computing occurs. Connecting qubits for practical use is a tough challenge until then p-bits can be used for machine learning and optimization problems. 

Journal Reference: Nature

Photovoltaic-powered sensors for the “internet of things”

Photovoltaic-powered sensors for the “internet of things”

By 2025, experts estimate the number of “internet of things” devices — including sensors that gather real-time data about infrastructure and the environment — could rise to 75 billion worldwide. As it stands, however, those sensors require batteries that must be replaced frequently, which can be problematic for long-term monitoring.

MIT researchers have designed photovoltaic-powered sensors that could potentially transmit data for years before they need to be replaced. To do so, they mounted thin-film perovskite cells — known for their potential low cost, flexibility, and relative ease of fabrication — as energy-harvesters on inexpensive radio-frequency identification (RFID) tags.

The cells could power the sensors in both bright sunlight and dimmer indoor conditions. Moreover, the team found the solar power actually gives the sensors a major power boost that enables greater data-transmission distances and the ability to integrate multiple sensors onto a single RFID tag.

“In the future, there could be billions of sensors all around us. With that scale, you’ll need a lot of batteries that you’ll have to recharge constantly. But what if you could self-power them using the ambient light? You could deploy them and forget them for months or years at a time,” says Sai Nithin Kantareddy, a PhD student in the MIT Auto-ID Laboratory. “This work is basically building enhanced RFID tags using energy harvesters for a range of applications.”

In a pair of papers published in the journals Advanced Functional Materials and IEEE Sensors, MIT Auto-ID Laboratory and MIT Photovoltaics Research Laboratory researchers describe using the sensors to continuously monitor indoor and outdoor temperatures over several days. The sensors transmitted data continuously at distances five times greater than traditional RFID tags — with no batteries required. Longer data-transmission ranges mean, among other things, that one reader can be used to collect data from multiple sensors simultaneously.

Depending on certain factors in their environment, such as moisture and heat, the sensors can be left inside or outside for months or, potentially, years at a time before they degrade enough to require replacement. That can be valuable for any application requiring long-term sensing, indoors and outdoors, including tracking cargo in supply chains, monitoring soil, and monitoring the energy used by equipment in buildings and homes.

Joining Kantareddy on the papers are: Department of Mechanical Engineering (MechE) postdoc Ian Mathews, researcher Shijing Sun, chemical engineering student Mariya Layurova, researcher Janak Thapa, researcher Ian Marius Peters, and Georgia Tech Professor Juan-Pablo Correa-Baena, who are all members of the Photovoltaics Research Laboratory; Rahul Bhattacharyya, a researcher in the AutoID Lab; Tonio Buonassisi, a professor in MechE; and Sanjay E. Sarma, the Fred Fort Flowers and Daniel Fort Flowers Professor of Mechanical Engineering.

Combining two low-cost technologies

In recent attempts to create self-powered sensors, other researchers have used solar cells as energy sources for internet of things (IoT) devices. But those are basically shrunken-down versions of traditional solar cells — not perovskite. The traditional cells can be efficient, long-lasting, and powerful under certain conditions “but are really infeasible for ubiquitous IoT sensors,” Kantareddy says.

Traditional solar cells, for instance, are bulky and expensive to manufacture, plus they are inflexible and cannot be made transparent, which can be useful for temperature-monitoring sensors placed on windows and car windshields. They’re also really only designed to efficiently harvest energy from powerful sunlight, not low indoor light.

Perovskite cells, on the other hand, can be printed using easy roll-to-roll manufacturing techniques for a few cents each; made thin, flexible, and transparent; and tuned to harvest energy from any kind of indoor and outdoor lighting.

The idea, then, was combining a low-cost power source with low-cost RFID tags, which are battery-free stickers used to monitor billions of products worldwide. The stickers are equipped with tiny, ultra-high-frequency antennas that each cost around three to five cents to make.

RFID tags rely on a communication technique called “backscatter,” that transmits data by reflecting modulated wireless signals off the tag and back to a reader. A wireless device called a reader — basically similar to a Wi-Fi router — pings the tag, which powers up and backscatters a unique signal containing information about the product it’s stuck to.

Traditionally, the tags harvest a little of the radio-frequency energy sent by the reader to power up a little chip inside that stores data, and uses the remaining energy to modulate the returning signal. But that amounts to only a few microwatts of power, which limits their communication range to less than a meter.

The researchers’ sensor consists of an RFID tag built on a plastic substrate. Directly connected to an integrated circuit on the tag is an array of perovskite solar cells. As with traditional systems, a reader sweeps the room, and each tag responds. But instead of using energy from the reader, it draws harvested energy from the perovskite cell to power up its circuit and send data by backscattering RF signals.

Efficiency at scale

The key innovations are in the customized cells. They’re fabricated in layers, with perovskite material sandwiched between an electrode, cathode, and special electron-transport layer materials. This achieved about 10 percent efficiency, which is fairly high for still-experimental perovskite cells. This layering structure also enabled the researchers to tune each cell for its optimal “bandgap,” which is an electron-moving property that dictates a cell’s performance in different lighting conditions. They then combined the cells into modules of four cells.

In the Advanced Functional Materials paper, the modules generated 4.3 volts of electricity under one sun illumination, which is a standard measurement for how much voltage solar cells produce under sunlight. That’s enough to power up a circuit — about 1.5 volts — and send data around 5 meters every few seconds. The modules had similar performances in indoor lighting. The IEEE Sensors paper primarily demonstrated wide‐bandgap perovskite cells for indoor applications that achieved between 18.5 percent and 21. 4 percent efficiencies under indoor fluorescent lighting, depending on how much voltage they generate. Essentially, about 45 minutes of any light source will power the sensors indoors and outdoors for about three hours.

The RFID circuit was prototyped to only monitor temperature. Next, the researchers aim to scale up and add more environmental-monitoring sensors to the mix, such as humidity, pressure, vibration, and pollution. Deployed at scale, the sensors could especially aid in long-term data-collection indoors to help build, say, algorithms that help make smart buildings more energy efficient.

“The perovskite materials we use have incredible potential as effective indoor-light harvesters. Our next step is to integrate these same technologies using printed electronics methods, potentially enabling extremely low-cost manufacturing of wireless sensors,” Mathews says.

Materials provided by Massachusetts Institute of Technology

CERN Experiment reveals rare particle decay events

CERN Experiment reveals rare particle decay events

Scientists at the European Organisation for Nuclear Research (CERN) have been running an experiment for several years to record billions of particles breaking apart. They finally have some interesting results to share with the world. 

The experiment named NA62 has involved scientists creating and destroying quark pairs known as kaons hoping for an event with a probability of one in a billion to verify the predictions of the Standard Model in particle physics. They managed to find one last year and now they have added two more. These findings were presented in the CERN Seminar and it was based on the data collected in 2017, ten times more than the amount which was collected the year before. 

The start has been positive for NA62 but for verification of results, researchers need some more examples of positively charged kaon decaying to form a positively charged pion and neutrino-antineutrino pair.

There are two possible results of this massive accelerator experiment. The first is that the immensely rare K+ decay occurs according to the prediction of the Standard Model essentially verifying it. The second possibility is that after the statistical calculation on the recombination of positively charged quark pairs to other particles, researchers find that things do not add up.

The Standard Model does not explain phenomena such as dark matter, antimatter and the mass difference in the fundamental particles. If some events occur which cannot be predicted by it then it can lead to the second version of the Standard Model. 

Kaons played an important role in the physics of the Standard Model. So discovering some irregularities about its behavior could have some serious consequences. Cristina Lazzeroni, NA62 spokesperson and physicist at the University of Birmingham said that the kaon decay process is named as “the golden channel” as it is ultra-rare and also predicted very well in the Standard Model. 

These experiments require huge efforts. A powerful synchrotron is used for shooting protons at high speeds into a target made of beryllium metal. Amidst the billion particles, around 60,000,000 are converted to kaons. They are channeled off for analysis of their decay and identify if any rare transformation occurred. To avoid any risk bias, the researchers go through a blind phase where they analyze the entire field of particles before turning to the areas where they expect to find the important signal. To understand how the rare event occurs and to find its frequency, a high amount of math is involved in its extreme precision. 

Till now, the evidence suggests that K+ will turn to a pion, neutrino, and antineutrino a maximum of 24.4 out of one hundred billion decays which is in fair range with the prediction of Standard Model, 8.4 times out of a hundred billion. 

The hunt is not yet finished as only three unusual K+ decay events have been identified. Many more particle collisions have to be analyzed but this will wait till 2021 when the super proton collider will be again started by CERN. 

Lazzeroni said that the results have limited statistics but have helped in putting constraints on new models. 

Renewable technology harnesses electricity from the darkness

Renewable technology harnesses electricity from the darkness

In economies around the globe, solar power is increasing at breakneck velocity and is already cheaper than the average wholesale price of electricity. This is encouraging considering the emergency of our climate.

However, the thing about solar energy is that it operates only when the sun is up. But at night, though in comparatively minute quantities, it is also feasible to draw power.

Researchers show an innovative tool in recent research that harnesses the distinction in temperature between radiative bodies and the night atmosphere. The power was sufficient to switch on a tiny LED light, making it appropriate for distant location apps and just about anywhere that requires some power at night.

“Remarkably, the device can generate electricity at night, when solar cells don’t work,” says lead author Aaswath Raman, who works as an assistant professor of materials science and engineering at the University of California, Los Angeles.

electricity from the cold dark night

So how exactly is all of this possible?

Solar cells produce electricity by absorbing photons through a semiconducting material that releases electrons collected on the back of the cell by electrodes fitted. When there is no sunlight, it is still possible to use solar power by storing it for subsequent use in batteries.

Batteries, however, can be costly, so it doesn’t make sense to employ them in specific applications, such as in very remote neighborhoods where you only need a bit of electricity to control some sensors, antennas, or small lights.

Rather than harnessing photons, the researchers exploited radiative cooling, the process by which a body loses heat by thermal radiation. Any sky-facing surface will lose heat to the atmosphere, shooting thermal radiation into space, eventually approaching a cooler temperature than the surrounding air. This is why, for example, you will see frost form on vegetation during any cold nights, even though the temperature outside is above water’s freezing point. By controlling this temperature difference, it is possible to generate electricity.

Raman and collaborators, including Stanford University scientists, tested a machine under a clear December sky that harnesses radiative cooling on a rooftop. The low-cost device comprises of a polystyrene enclosure covered in very lightweight aluminized mylar that minimizes the quantity of escaping thermal radiation.

The device was then placed on a desk one meter right above the surface, drawing heat from the surrounding air and releasing it into the night’s sky through a black emitter.

When the thermoelectric module was connected to a voltage boost converter, it was effectively capable of turning on a low-power white LED. Over six hours, the researchers estimated the power output of 25 milliwatts per square meter.

For illustration, a typical solar cell will generate about 150 watts per square meter in peak conditions, almost 10,000 more than the thermal radiative cooling device.

Raman says that the amount of electricity that can be generated per unit area during the night can be primarily increased by order of magnitude with some upgrades. And since it is made from elementary components that can be purchased off the shelf, the researchers understand there are many applications for which their device can find practical use. It can, for instance, operate in scorching, dry climates and could also act as a radiative cooling component.

Journal Reference: Joule

For the first time, astronauts manufacture cement in space for future Mars and Moon colonies

For the first time, astronauts manufacture cement in space for future Mars and Moon colonies

According to new research, human beings can create habitats on the moon and Mars, thanks to concrete which is manufactured in space. Astronauts on the International Space Station have created cement for the first time in microgravity, successfully demonstrating that it can develop and harden in space. The study appears in the Frontiers in Materials journal. 

For construction purposes, concrete is a reliable building material. It is a mixture of rocks, sand and a combination of cement and water. As per the new study, it could also protect the astronauts from cosmic radiation and other dangers of living outside Earth. 

The equipment and human beings need protection from radiation and extremities in the temperature on missions to Mars and Moon. For this, infrastructures need to be built on these environments. Aleksandra Radlinska, principal investigator and assistant civil engineer professor said that the plan is to build with materials like concrete on space. Due to its sturdy nature, it provides better protection than many other materials. 

Concrete and mixtures similar to concrete can also be manufactured by local materials such as moon dust. If in the future, human beings are successful in establishing colonies on the Moon and Mars, then they can use local materials instead of receiving them from Earth which is quite expensive and time-consuming. 

In the study known as “Microgravity Investigation of Cement Solidification”, astronauts used water mixed with tricalcium silicate, the main component in commercial cement. This has never been created in microgravity. Cement might seem to be a simple material but its structure is quite complex. On dissolving in water, the cement crystals form and begin to fit together. This changes the molecular structure of the material. The aim of this study was to find out the formation of cement in microgravity along with the possible formation of unique microstructures. It was also possible to compare the samples made in space with that of Earth. 

The cement made in space had different microstructures than the one made on Earth. It was more porous than the Earth-made cement. Increased porosity has direct effects on the material’s strength, although the strength of the space-formed material has not been tested yet. Even for concrete which is used on Earth, all the aspects of the hydration process are not known clearly. Scientists will now check which aspects of the space-made concrete are beneficial and which are harmful for use in space. 

The process of conducting the experiments might have some effects on the study results. Cement on Earth is not processed in sealed packets like that on space. The cement made on space developed and hardened in the same way as that on Earth although it looked a bit different. Scientists would now work on the binders essential for space and for different gravity levels from 0 g to g on Mars. 

Journal Reference: Frontiers in Materials

The world's first voice AI crime

The world’s first voice AI crime

We might have witnessed the first crime powered by artificial intelligence in the world where synthetic audio was used for imitating the voice of a chief executive to trick his subordinate in transferring an excess of 240,000 US Dollars into a secret account.

The insurer of the company, Euler Hermes did not name the company which was involved. On a fateful day, the company’s managing director was called and a voice resembling his superiors instructed him to wire the amount to an account-based in Hungary. The money was supposed to cut on the fines of late payment and the financial details of the transaction were sent over email while the managing director was on call. Euler Hermes said that the software was able to mimic the voice along with the exact German accent, tonality, and punctuation. 

The thieves tried for a second attempt to transfer funds in this manner but this time the managing director suspected the intentions and directly called his boss. While he was on the phone with his real boss, the artificial voice demanded to speak to him. 

Deepfakes have been growing in complexity in the last few years. It cannot be detected easily by the online platforms and companies have struggled to handle it. Its constant evolution has made it clear that simple detection would not serve any purpose as it has been gaining an audience through monetization and constant generation of viral content. There are apps that can put someone’s face on any actor’s film clips making it a source of entertainment. This kind of technology would have sounded fancy a few years ago but now it can be misused by anyone who has a creative bent of mind channeling in improper ways. There are many positive uses too. It can be used in humanizing the automated call systems and help the mute people to talk again. But if unregulated it can cause fraud and cybercrime on a massive scale. 

Cybersecurity firm Symantec reported that they managed to find a minimum of three instances where the executives’ voice was mimicked to loot cash from the companies. However, it did not comment on the victim companies. 

In this technique, a person’s voice is processed and broken down into its phonetic fundamentals such as syllables or sounds. Then these can be rearranged to form new phrases with a similar tone and speech patterns. 

Researchers are working hard to develop systems that can detect fraud audio clips and combat them. While Google, on the other hand, has also created one of the world’s most persuasive AI services, Duplex service that can call restaurants for booking tables in a simulated, lifelike voice. 

Scientists have to be cautious when these technologies are released along with framing proper systems to fight scams. 

China successfully clones kitten for the first time

China successfully clones kitten for the first time

Huang Yu, a Chinese businessman aged 22 years lost his beloved cat, Garlic. But now he has become the pet parent of Garlic II, a clone of late Garlic. Yu took the services of Sinogene, a commercial company involved in pet-cloning that is based in Beijing. It has already cloned over 40 dogs, each of which nearly costs 53,000 US Dollars. The copy cat of Yu which was born on July 21 has the same fur pattern of white and gray as of Garlic. It cost him approximately 35,000 US Dollars. This was the first cat that was successfully cloned by the company.

Yu informed the New York Times that he had buried Garlic, the original cat in the month of January. It died at an age of 2 years because of a UTI. At this moment, he decided to proceed with cloning. But before that, the corpse of Garlic had to be unearthed and kept in the freezer. After that, an employee from Sinogene came and took the sample of DNA. All this work was worth it in the end.

For Yu, Garlic was irreplaceable. He said that since Garlic did not leave anything for later generations, his only choice was to go for cloning. For creating Garlic 2.0, researchers took skin cells from Garlic and then implanted them in the feline eggs. They were able to produce 40 cloned embryos from this process. Chen Benchi, head of the experiment’s team at Sinogene said that the embryos were placed in surrogate cats leading to three pregnancies. In the end, only one made it full term.

Pets have been cloned in other nations such as Britain, South Korea, and the US. However, experts say that the first cloned cat of China is a huge milestone for the commercial cloning sector. This is attracting the private pet owners along with celebrity animal lovers such as Barbra Streisand who paid 50,000 US Dollars for cloning Sammie, her Maltipoo.

An increasing proportion of the customers are young people who have recently passed out of college. Pet cloning helps in meeting the emotional needs of younger people irrespective of the origin of the pets.

Sinogene hopes this technology can be used for cloning the endangered species such as giant pandas or South China tigers. However, this shall take some more time as it is a difficult endeavor. Chen Dayuan, panda expert at the Chinese Academy of Sciences said that it is possible that cats can be surrogates for baby pandas who are smaller than the infant kittens.

Huang was disappointed a bit as the cloned kitten did not have a patch of black fur on its chin which the original cat had. However, he accepted it as every technology has some limitations.