Researchers develop new sensor to help detect early-stage cancer

The new sensor can detect very low concentrations of cancer markers in blood tests and is among new technologies to be presented at the 10th annual International Nanomedicine Conference.

0
72
Researchers develop new sensor to help detect early-stage cancer
(Credit: Pixabay)

A new device that can detect very low concentrations of cancer markers in blood tests could one day help doctors diagnose cancer at its earliest stages, researchers say.

A group of chemists from UNSW Sydney’s Australian Centre for NanoMedicine (ACN) and biologists from UNSW’s Lowy Cancer Research Centre have created an early version of the first “nanopore blockade sensor” that can analyse disease biomarkers at a rapid, single molecule level.

Cancer biomarkers – or tumour markers – are substances, often proteins, that are produced by the body in response to cancer growth.

UNSW Scientia Professor Justin Gooding, who developed the technology with a team of scientists, said a key approach to reducing deaths from life-threatening cancers was to diagnose cancers as early as possible, when treatments were far more effective.

“Developing ultrasensitive cancer marker sensors is critical because it allows for very early detection after the cancer has occurred but before any symptoms start appearing,” said Professor Gooding, from the School of Chemistry at UNSW Science. “The best way to cure cancer is to detect and diagnose it early. What this sensor can do is detect biomarkers and single molecules at much lower levels than current blood tests can, and we can get results in several minutes.”

The nanopore blockade sensors work by using magnetic particles to capture biomarkers and bring them to one of many small pores drilled through a silicon membrane. If a magnetic nanoparticle has captured the biomarker, it will block the pore. By counting which pores are blocked the biomarkers can be counted, one molecule at a time. Importantly, the device can be used on whole blood samples regularly taken at pathology labs.

‘This sensor can detect biomarkers and single molecules at much lower levels than current blood tests can, and we can get results in several minutes.’

The technology is about five to 10 years away from being available to patients and needs to go through rigorous further research and trials now, said Professor Gooding. “This is a really hot area in cancer research, especially as it could potentially have a substantial impact as an effective means to estimate how effective treatment will be and assess how likely it is for cancer to reoccur.”

The research and development of the sensor is funded by the Australian Research Council through the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and an ARC Australian Laureate Fellowship.

Materials provided by the University of New South Wales

LEAVE A REPLY

Please enter your comment!
Please enter your name here