Login with your Social Account

transistors

Researchers a step closer in creating successor to shrinking transistors

Over the decades, computers and other electronic devices have shrunk in size and also been significantly faster. This has been possible as the makers have understood and implemented the techniques to decrease the size of individual transistors, small electrical switches which work in transmitting information.

Researchers have relentlessly worked on decreasing the size of the transistor so as to pack more in each chip. However, it seems that pursuit is almost over as scientists are rapidly approaching the minimum physical limit for the size of the transistor, with the current models measuring 10 nanometres which is equivalent to the width of 30 atoms.

Dr. Kyeongjae Cho, professor of Materials science at the University of Texas, Dallas remarked that the power of processing of electronic equipment is derived from the millions and billions of transistors which are interconnected on one chip. He also pointed out that we are very rapidly nearing the minimum scale of size.

Advertisements

For further making improvement on the processing speed, the industry of microelectronics is currently looking at alternative possibilities. Professor Cho’s research work has been published in the Nature Communications journal.

Normal transistors can only transmit two types of information. Being a switch, the transistor is either in the on state or off state which in binary language translates to 1 or 0.

A technique to increase the processing power without putting in additional transistors would be to ramp up the information that can be conveyed by a single transistor with the help of intermediate stages between 1 and 0. The multi-valued transistor based on this principle would make for more operations and a greater amount of information which can be processed in one device.

Cho said that the concept of multi-valued logic transistors is not very new and there have been past attempts to create similar devices.  

Cho and his research group used a unique configuration of two types of zinc oxide to make a composite layer which is incorporated with other materials inside a superlattice. They found out that the physics for multi-valued logic can be achieved by embedding crystals of zinc oxide called quantum dots in amorphous zinc oxide. The order of atoms in amorphous solid is not rigid as in crystals. Cho has applied for patenting his work as he found that it is possible to create an electronic structure for the multi-level logic structure.

The significance of this research is that it can bridge the gap between current computing and quantum computers. Cho added that quantum computing is not yet commercialized and his work is in the direction to merge the gap between binary and large degrees of freedom.

 

About the author: Kalpit Veerwal
Kalpit Veerwal is a second year Computer Science undergraduate at IIT Bombay. He is well known for being the only person to score 360/360 in JEE (Main). He is registered in the Limca Book of Records for the same. A blogger in his free time, he has also secured top ranks in various exams held in India and the world.

Write Comment!

Comments

No comments yet