The first-ever image of a black hole released by the Event Horizon Telescope has once again proved Einstein’s general theory of relativity to be correct. **Avery Broderick**, of the **University of Waterloo** and **Perimeter Institute**, Canada, who was also in the EHT team mentioned in the press in Washington that the century-old theory of general relativity put forward by Einstein passed a crucial test, spanning from the horizon to the stars.

In his theory, Einstein gave the description of gravity as a geometric property of both space and time. To be specific, the spacetime curvature is related to the momentum and energy of the matter and radiation which are present. After he published the special theory of relativity, Einstein began work on how he can include gravity in his relativistic approach. It took him almost a decade to find a relativistic approach to the gravitational forces. And the culmination of his work are the Einstein field equations which he presented to the Prussian Academy of Science.

The relativity theory predicts that whenever the ratio of the mass of an object to its radius is very very large, it leads to the formation of the black hole. This is a region from which nothing can escape including light. It also predicts that each of these black holes has an event horizon which is almost circular and of a size which can be predicted by the mass of black holes. The event horizons are the boundaries which demarcate one region from the remaining spacetime.

And this is exactly what we see in the images of the black hole released by EHT. It shows the **silhouette** of a black hole at the centre of M87, a giant galaxy which is 55 million light years away from Earth. The event horizon in the image is nearly circular and the calculated mass also matches due to the massive distance. The mass of the black hole is 6.5 billion times that of our sun which is pretty big number even by standards of supermassive black holes.

This is not the first time that Einstein’s theory has been successfully verified, but it has survived the challenge posed by many experiments in the past century. A very recent example is that the general relativity predicts that objects with a very large mass and travelling at a great speed generate ripples in space-time called gravitational waves. And they were confirmed in 2015 by the Laser Interferometer Gravitational Wave Observatory(LIGO) which detected the ripples generated between two black holes.

**Watch This Video:**