Scientists discover supersolidity in quantum gases for the first time

supersolid representation artist
Artistic rendition of a supersolid made from two different types of ultracold atoms. The atoms are arranged in a regularly repeating pattern like a solid, but also can move frictionlessly like a superfluid. (Credits - Wikimedia Commons)

Francesca Ferlaino and other researchers from Austrian Academy of Sciences and the University of Innsbruck created a report on Physical Review X on what they observed of the behavior of a supersolid in dipolar quantum gases made of dysprosium and erbium. Atoms are arranged in a crystalline pattern as well as they behave like a superfluid in a supersolid where particles can move even when there is no friction.

Dr. Lauriane Chomaz from the Institute for Experimental Physics at the University of Innsbruck and colleagues said that their work was mainly focused on attaining the supersolidity in helium but now the researchers are emphasizing more on atomic gases with strong dipolar interactions. Many experiments have been conducted and it has been observed and disclosed in one of the recent experiments that atomic gases have some common properties of that of superfluid helium and these features are the basic features required for achieving a basic condition with both spontaneous density modulation and global phase coherence.

Density modulation and global phase coherence are the indicators of supersolidity. The team created the two supersolids with the help of erbium and dysprosium quantum gases. The scientists said that they created different states by performing different experiments which will show the features of supersolidity by adjusting the relational strength among the particles in erbium quantum gases as well as the erbium quantum gases.

Dr. Francesca Ferlaino who is the senior author from the University of Innsbruck and the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences said that the way the erbium works is only for the short period of time and he also adds that their dysprosium realization shows an unmatched balance.

In this experiment, the state of supersolidity can not only live longer but the state of supersolidity can be straightforwardly attained through the process of evaporative cooling which can be started from a thermal sample. The simple principle here is like getting energized over a cup of tea. The principle here is removing the particles which are carrying most of the energies so that the gas slowly cools down and down and slowly achieves the quantum-degenerate stationary state along with the help of the characteristics of the supersolid at the thermal equilibrium.

Thus we can conclude here that the experiment offers a very thrilling hope for more experiments in the future and the theories as well since the state of the supersolid is a bit affected by dissipative dynamics or excitations which leads to the pavement so that it can probe its excitation spectrum and its superfluid behavior.


Please enter your comment!
Please enter your name here