Login with your Social Account

qubit

Researchers for the first time report quantum teleportation in qutrit

Scientists have successfully completed teleportation of a qutrit which is a piece of quantum information based on three states and this has opened a whole new host of opportunities and possibilities for quantum computing and communication sector.

Until now, Qubits were used for quantum transportation for long distances, however, a new proof of concept study has shown that future quantum networks will be able to carry much more data with lesser interference that was being thought. Bits in classical computing can be in two states, either 1 or 0. However, in quantum computing, there is qubit which can be both 0 or 1 at the same time called superposition. Qutrit has a similar relation to a trit, adding superposition to the classical examples, that are represented as 0,1 or 2. A qutrit can be all of these at one single time, which makes a huge leap in terms of computer processing power or the amount of information that can be sent at once. It adds another level of complexity for quantum computing researchers.

Quantum teleportation is simply getting the quantum information from one place to the other through a process called quantum entanglement. It is a case when two quantum particles are interlinked and one reveals the properties of the other, no matter how far apart they might be present. The quantum information can be beamed via photons of light that might be used in the future to create an unhackable internet network which will be protected by fundamental laws of physics.

By splitting the path of a photon into 3 parts close to each other in a careful manner with lasers, beam splitters and barium crystals, researchers were able to create qutrit and generate entanglement.

The system produced a fidelity of 0.75 over a measurement of 12 states which is an accurate result. The setup remained slow and inefficient but has shown that quantum teleportation is possible. Daniel Garisto reports in Scientific American, that another group of scientists have recorded teleportation across 10 states but their work has not yet been accepted by a peer-reviewed journal. They would also upgrade their systems in the future maybe even to the heights of ququarts.

Researchers mentioned that their work provides a complete toolbox for teleporting a particle in an intact manner by combining previous methods of teleportation of two-particle systems and multiple degrees of freedom. The scientists expect their results will pave way for quantum technology applications in higher dimensions since teleportation plays a central role in quantum networks and repeaters.

Journal Reference: arxiv

Diamond graphite structure

Researchers demonstrate quantum teleportation within a diamond

Researchers from the Yokohama National University have been successful in teleporting quantum information securely within the boundaries of a diamond. The implications of this study are huge in the field of quantum information technology. It defines how sensitive information can be safely shared and stored. The results of the study have been published in the journal Communications Physics

Hideo Kosaka, professor at Yokohama National University, also a co-author of the study said that the phenomenon of quantum teleportation permits the transfer of quantum information into space which cannot be normally accessed. In addition to this, it also permits the information transfer into quantum memory by not revealing or destroying the stored information. 

In the case of a diamond, this inaccessible space consisted of its carbon atoms. Since a diamond is composed of well linked, self-contained carbon atoms it has the most suitable ingredients for quantum teleportation to occur. 

In the nucleus of the carbon atom, there are six protons and six neutrons. This nucleus is surrounded by six spinning electrons. In the bonding of atoms to form a diamond a very strong lattice is formed. Although diamond can also have complex defects. When a nitrogen atom is located in one of the two adjacent vacancies where there should be a carbon atom, the defect is called a nitrogen-vacancy-center. 

When surrounded by carbon atoms, the researchers call the nucleus of a nitrogen atom a nanomagnet

For manipulation of the electron and carbon isotope in the vacancy, researchers attached a wire of the dimensions of a quarter width of a human hair to the diamond’s surface. Then the team applied a radio wave and microwave to the wire for making an oscillating magnetic field around the diamond. The microwave was manipulated for generating the optimal conditions for the transfer of quantum information in the diamond. 

Then Kosaka’s team used nitrogen nanomagnet for anchoring an electron. They forced the electron spin for entangling with a carbon nuclear spin by using radio and microwaves. The break down of the electron spin occurs under the magnetic field which has been created by the nanomagnet, making it susceptible to entanglement. 

After the entanglement of the pieces which mean that the physical characteristics cannot be described individually as they are very similar, a photon holding the quantum information is applied and is absorbed by the electron. The absorption allows the polarization state of the photon to be transferred into the carbon, which is mediated by the entangled electron, demonstrating a teleportation of information at the quantum level.

This method can take chunks of information, from one node to another in the quantum field. Researchers want to develop this method further to enable large scale quantum computation and meteorology.