Login with your Social Account

A battery-free sensor for underwater exploration

A battery-free sensor for underwater exploration

To investigate the vastly unexplored oceans covering most our planet, researchers aim to build a submerged network of interconnected sensors that send data to the surface — an underwater “internet of things.” But how to supply constant power to scores of sensors designed to stay for long durations in the ocean’s deep?

MIT researchers have an answer: a battery-free underwater communication system that uses near-zero power to transmit sensor data. The system could be used to monitor sea temperatures to study climate change and track marine life over long periods — and even sample waters on distant planets. They are presenting the system at the SIGCOMM conference this week, in a paper that has won the conference’s “best paper” award.

The system makes use of two key phenomena. One, called the “piezoelectric effect,” occurs when vibrations in certain materials generate an electrical charge. The other is “backscatter,” a communication technique commonly used for RFID tags, that transmits data by reflecting modulated wireless signals off a tag and back to a reader.

In the researchers’ system, a transmitter sends acoustic waves through water toward a piezoelectric sensor that has stored data. When the wave hits the sensor, the material vibrates and stores the resulting electrical charge. Then the sensor uses the stored energy to reflect a wave back to a receiver — or it doesn’t reflect one at all. Alternating between reflection in that way corresponds to the bits in the transmitted data: For a reflected wave, the receiver decodes a 1; for no reflected wave, the receiver decodes a 0.

“Once you have a way to transmit 1s and 0s, you can send any information,” says co-author Fadel Adib, an assistant professor in the MIT Media Lab and the Department of Electrical Engineering and Computer Science and founding director of the Signal Kinetics Research Group. “Basically, we can communicate with underwater sensors based solely on the incoming sound signals whose energy we are harvesting.”

The researchers demonstrated their Piezo-Acoustic Backscatter System in an MIT pool, using it to collect water temperature and pressure measurements. The system was able to transmit 3 kilobytes per second of accurate data from two sensors simultaneously at a distance of 10 meters between sensor and receiver.

Applications go beyond our own planet. The system, Adib says, could be used to collect data in the recently discovered subsurface ocean on Saturn’s largest moon, Titan. In June, NASA announced the Dragonfly mission to send a rover in 2026 to explore the moon, sampling water reservoirs and other sites.

“How can you put a sensor under the water on Titan that lasts for long periods of time in a place that’s difficult to get energy?” says Adib, who co-wrote the paper with Media Lab researcher JunSu Jang. “Sensors that communicate without a battery open up possibilities for sensing in extreme environments.”


Preventing deformation

Inspiration for the system hit while Adib was watching “Blue Planet,” a nature documentary series exploring various aspects of sea life. Oceans cover about 72 percent of Earth’s surface. “It occurred to me how little we know of the ocean and how marine animals evolve and procreate,” he says. Internet-of-things (IoT) devices could aid that research, “but underwater you can’t use Wi-Fi or Bluetooth signals … and you don’t want to put batteries all over the ocean, because that raises issues with pollution.”

That led Adib to piezoelectric materials, which have been around and used in microphones and other devices for about 150 years. They produce a small voltage in response to vibrations. But that effect is also reversible: Applying voltage causes the material to deform. If placed underwater, that effect produces a pressure wave that travels through the water. They’re often used to detect sunken vessels, fish, and other underwater objects.

“That reversibility is what allows us to develop a very powerful underwater backscatter communication technology,” Adib says.

Communicating relies on preventing the piezoelectric resonator from naturally deforming in response to strain. At the heart of the system is a submerged node, a circuit board that houses a piezoelectric resonator, an energy-harvesting unit, and a microcontroller. Any type of sensor can be integrated into the node by programming the microcontroller. An acoustic projector (transmitter) and underwater listening device, called a hydrophone (receiver), are placed some distance away.

Say the sensor wants to send a 0 bit. When the transmitter sends its acoustic wave at the node, the piezoelectric resonator absorbs the wave and naturally deforms, and the energy harvester stores a little charge from the resulting vibrations. The receiver then sees no reflected signal and decodes a 0.

However, when the sensor wants to send a 1 bit, the nature changes. When the transmitter sends a wave, the microcontroller uses the stored charge to send a little voltage to the piezoelectric resonator. That voltage reorients the material’s structure in a way that stops it from deforming, and instead reflects the wave. Sensing a reflected wave, the receiver decodes a 1.

Long-term deep-sea sensing

The transmitter and receiver must have power but can be planted on ships or buoys, where batteries are easier to replace, or connected to outlets on land. One transmitter and one receiver can gather information from many sensors covering one area or many areas.

“When you’re tracking a marine animal, for instance, you want to track it over a long range and want to keep the sensor on them for a long period of time. You don’t want to worry about the battery running out,” Adib says. “Or, if you want to track temperature gradients in the ocean, you can get information from sensors covering a number of different places.”

Another interesting application is monitoring brine pools, large areas of brine that sit in pools in ocean basins, and are difficult to monitor long-term. They exist, for instance, on the Antarctic Shelf, where salt settles during the formation of sea ice, and could aid in studying melting ice and marine life interaction with the pools. “We could sense what’s happening down there, without needing to keep hauling sensors up when their batteries die,” Adib says.

Polly Huang, a professor of electrical engineering at Taiwan National University, praised the work for its technical novelty and potential impact on environmental science. “This is a cool idea,” Huang says. “It’s not news one uses piezoelectric crystals to harvest energy … [but is the] first time to see it being used as a radio at the same time [which] is unheard of to the sensor network/system research community. Also interesting and unique is the hardware design and fabrication. The circuit and the design of the encapsulation are both sound and interesting.”

While noting that the system still needs more experimentation, especially in sea water, Huang adds that “this might be the ultimate solution for researchers in marine biography, oceanography, or even meteorology — those in need of long-term, low-human-effort underwater sensing.”

Next, the researchers aim to demonstrate that the system can work at farther distances and communicate with more sensors simultaneously. They’re also hoping to test if the system can transmit sound and low-resolution images.

Hydration sensor could improve dialysis

Hydration sensor could improve dialysis

For patients with kidney failure who need dialysis, removing fluid at the correct rate and stopping at the right time is critical. This typically requires guessing how much water to remove and carefully monitoring the patient for sudden drops in blood pressure.

Currently, there is no reliable, easy way to measure hydration levels in these patients, who number around half a million in the United States. However, researchers from MIT and Massachusetts General Hospital have now developed a portable sensor that can accurately measure patients’ hydration levels using a technique known as Nuclear Magnetic Resonance (NMR) relaxometry.

Such a device could be useful for not only dialysis patients but also people with congestive heart failure, as well as athletes and elderly people who may be in danger of becoming dehydrated, says Michael Cima, the David H. Koch Professor of Engineering in MIT’s Department of Materials Science and Engineering.

“There’s a tremendous need across many different patient populations to know whether they have too much water or too little water,” says Cima, who is the senior author of the study and a member of MIT’s Koch Institute for Integrative Cancer Research. “This is a way we could measure directly, in every patient, how close they are to a normal hydration state.”

The portable device is based on the same technology as magnetic resonance imaging (MRI) scanners but can obtain measurements at a fraction of the cost of MRI, and in much less time, because there is no imaging involved.

Lina Colucci, a former graduate student in health sciences and technology, is the lead author of the paper, which appears in the July 24 issue of Science Translational Medicine. Other authors of the paper include MIT graduate student Matthew Li; MGH nephrologists Kristin Corapi, Andrew Allegretti, and Herbert Lin; MGH research fellow Xavier Vela Parada; MGH Chief of Medicine Dennis Ausiello; and Harvard Medical School assistant professor in radiology Matthew Rosen.

 

Hydration status

Cima began working on this project about 10 years ago, after realizing that there was a critical need for an accurate, noninvasive way to measure hydration. Currently, the available methods are either invasive, subjective, or unreliable. Doctors most frequently assess overload (hypervolemia) by a few physical signs such as examining the size of the jugular vein, pressing on the skin, or examining the ankles where water might pool.

The MIT team decided to try a different approach, based on NMR. Cima had previously launched a company called T2 Biosystems that uses small NMR devices to diagnose bacterial infections by analyzing patient blood samples. One day, he had the idea to use the devices to try to measure water content in tissue, and a few years ago, the researchers got a grant from the MIT-MGH Strategic Partnership to do a small clinical trial for monitoring hydration. They studied both healthy controls and patients with end-stage renal disease who regularly underwent dialysis.

One of the main goals of dialysis is to remove fluid in order bring patients to their “dry weight,” which is the weight at which their fluid levels are optimized. Determining a patient’s dry weight is extremely challenging, however. Doctors currently estimate dry weight based on physical signs as well as through trial-and-error over multiple dialysis sessions.

The MIT/MGH team showed that quantitative NMR, which works by measuring a property of hydrogen atoms called T2 relaxation time, can provide much more accurate measurements. The Tsignal measures both the environment and quantity of hydrogen atoms (or water molecules) present.

“The beauty of magnetic resonance compared to other modalities for assessing hydration is that the magnetic resonance signal comes exclusively from hydrogen atoms. And most of the hydrogen atoms in the human body are found in water molecules,” Colucci says.

The researchers used their device to measure fluid volume in patients before and after they underwent dialysis. The results showed that this technique could distinguish healthy patients from those needing dialysis with just the first measurement. In addition, the measurement correctly showed dialysis patients moving closer to a normal hydration state over the course of their treatment.

Furthermore, the NMR measurements were able to detect the presence of excess fluid in the body before traditional clinical signs — such as visible fluid accumulation below the skin — were present. The sensor could be used by physicians to determine when a patient has reached their true dry weight, and this determination could be personalized at each dialysis treatment.

Better monitoring

The researchers are now planning additional clinical trials with dialysis patients. They expect that dialysis, which currently costs the United States more than $40 billion per year, would be one of the biggest applications for this technology. This kind of monitoring could also be useful for patients with congestive heart failure, which affects about 5 million people in the United States.

“The water retention issues of congestive heart failure patients are very significant,” Cima says. “Our sensor may offer the possibility of a direct measure of how close they are to a normal fluid state. This is important because identifying fluid accumulation early has been shown to reduce hospitalization, but right now there are no ways to quantify low-level fluid accumulation in the body. Our technology could potentially be used at home as a way for the care team to get that early warning.”

Sahir Kalim, a nephrologist and assistant professor of medicine at Massachusetts General Hospital, described the MIT approach as “highly novel”.

“The development of a bedside device that can accurately inform providers about how much fluid a patient should ideally have removed during their dialysis treatment would likely be one of the most significant developments in dialysis care in many years,” says Kalim, who was not involved in the study. “Colucci and colleagues have made a promising innovation that may one day yield this impact.”

In their study of the healthy control subjects, the researchers also incidentally discovered that they could detect dehydration. This could make the device useful for monitoring elderly people, who often become dehydrated because their sense of thirst lessens with age, or athletes taking part in marathons or other endurance events. The researchers are planning future clinical trials to test the potential of their technology to detect dehydration.

Materials provided by Massachusetts Institute of Technology

Researchers develop new sensor to help detect early-stage cancer

Researchers develop new sensor to help detect early-stage cancer

A new device that can detect very low concentrations of cancer markers in blood tests could one day help doctors diagnose cancer at its earliest stages, researchers say.

A group of chemists from UNSW Sydney’s Australian Centre for NanoMedicine (ACN) and biologists from UNSW’s Lowy Cancer Research Centre have created an early version of the first “nanopore blockade sensor” that can analyse disease biomarkers at a rapid, single molecule level.

Cancer biomarkers – or tumour markers – are substances, often proteins, that are produced by the body in response to cancer growth.

UNSW Scientia Professor Justin Gooding, who developed the technology with a team of scientists, said a key approach to reducing deaths from life-threatening cancers was to diagnose cancers as early as possible, when treatments were far more effective.

“Developing ultrasensitive cancer marker sensors is critical because it allows for very early detection after the cancer has occurred but before any symptoms start appearing,” said Professor Gooding, from the School of Chemistry at UNSW Science. “The best way to cure cancer is to detect and diagnose it early. What this sensor can do is detect biomarkers and single molecules at much lower levels than current blood tests can, and we can get results in several minutes.”

The nanopore blockade sensors work by using magnetic particles to capture biomarkers and bring them to one of many small pores drilled through a silicon membrane. If a magnetic nanoparticle has captured the biomarker, it will block the pore. By counting which pores are blocked the biomarkers can be counted, one molecule at a time. Importantly, the device can be used on whole blood samples regularly taken at pathology labs.

‘This sensor can detect biomarkers and single molecules at much lower levels than current blood tests can, and we can get results in several minutes.’

The technology is about five to 10 years away from being available to patients and needs to go through rigorous further research and trials now, said Professor Gooding. “This is a really hot area in cancer research, especially as it could potentially have a substantial impact as an effective means to estimate how effective treatment will be and assess how likely it is for cancer to reoccur.”

The research and development of the sensor is funded by the Australian Research Council through the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and an ARC Australian Laureate Fellowship.

Materials provided by the University of New South Wales