Login with your Social Account

gas giant interior

Formation of superionic ice helps to detect internal structure of Neptune and Uranus

The magic of science has just achieved the unachievable – the most bizarre existence of “supersonic hot ice”. It is called as such because of the peculiarity of frozen water that can remain solid even at extremely high temperature.

Extreme temperature and pressure can crush the frozen substance into increasingly odd varieties. Superionic materials are dual beasts that can exist in dual state-partly solid and liquid at the same time. It is highly conductive material that exists at high pressures such as, one and four million times more than that at sea level and temperature half as hot as the surface of the sun. These conditions are fulfilled by exoplanets like Uranus and Neptune.

After a lot of research conducted by scientists, it was found that water ice becomes hundred times more electrically more conductive. But achieving above mentioned extreme conditions was not a cake walk for scientists. The study has been published in the Nature journal. 

Marius Millot, study leader and researcher at the Lawrence Livermore National Laboratory, California remarked that the ice sample which they have observed is at a very high temperature, ranging to thousands of degrees.

Scientists have already known that there are 17 varieties of crystalline ice and they had predicted 30 years back that water can be squeezed to superionic forms through application of extreme pressure.

For that, a set up was made in which a thin layer of water was placed between 2 diamond anvils and then six giant lasers were used to generate shockwaves at pressure up to 1 to 4 million times Earth’s atmospheric pressure and temperature between 1650 and 2760 degree Celsius. But all these could only be maintained for a fraction of a second, so physicists used lasers to blast a tiny piece of iron foil creating a wave of plasma. The X-rays showed unprecedented cubic lattice structure with oxygen at each corner and one at the face.

After these persistent and consistent experiments of scientists, they finally got a hint about the unusual tilting of the magnetic field of Neptune and Uranus. They concluded that Uranus and Neptune should have superionic ice layers that act as our planet mantle and that is responsible for their unusual magnetic field tilting at different angles.

Roberto Car, a physicist at Princeton University remarked that more investigations are needed to prove that ice is superionic, although this experiment is an important step in understanding the variableness of water.

Thus, this bizarre and unprecedented but the most thrilling creation is going to help in unpuzzling the various reasons for the origin, existence and evolution of these exoplanets.

Nasa Supersonic Shockwaves Merging

NASA captures stunning images of merging supersonic shockwaves

For the first time ever in history, NASA captured air to air images of the interaction of shockwaves from two supersonic aircraft merging in the air. This was done to create a Jet that flies faster than the speed of sound without producing irritating ‘Sonic booms‘.

The greatest challenge in capturing the image was timing. NASA flew a B-200 equipped with imaging system, that took 10 years to develop, reached around 30,000 feet to acquire the spellbinding image and collected 1,400 frames per second.

The image depicts two T-38 supersonic Jets from the US Air Force, during a test flight from the research center at Air Force Base, California.

The pair of T-38s were required to not only remain in proper formation but to fly within the camera’s frame at supersonic speeds, as they passed 2,000 feet beneath the B-200. As a result, the three aircrafts were at the right place and at the right time.

“I am ecstatic about how these images turned out. We never dreamt that it would be this clear, this beautiful. With this upgraded system, we have, by an order of magnitude, improved both the speed and quality of our imagery from previous research.” J.T. Heineck, a scientist at NASA’s Ames Research Center, said in a statement.

The system will be used to capture data confirming the design of the agency’s X-59 to quiet supersonic Technology X-Plane. The X-59 flying supersonic will produce shockwaves in such a way that instead of sonic boom only a quiet rumble may be heard.

Low Boom Flight Demonstrator

Nasa Quiet Supersonic Technology Low-Boom Flight Demonstrator (Source: NASA)

When an aircraft crosses around 1,225 km per hour at sea level, it produces waves from the pressure it puts around, producing the irritating thunderous sound called ‘Sonic booms’.

Sonic booms can be Deafening to people on the ground, responsible for shattering of window panes.
Few countries like United State and cities have banned the Franco-British airliner from their airspace because of its sonic booms.

“What’s interesting is, if you look at the rear T-38, you see these shocks kind of interact in a curve.
This is because the trailing T-38 is flying in the wake of the leading aircraft, so the shocks are going to be shaped differently. This data is really going to help us advance our understanding of how these shocks interact.” said Neal Smith, a research engineer at NASA.

These images will be helpful for research into planes that can fly faster than sound without causing irritating sonic booms, lifting current restrictions on supersonic flight over land.